Skip to main content

Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides

  • Protocol
Phospho-Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1355))

Abstract

Phosphoproteomics relies on methods for efficient purification and sequencing of phosphopeptides from highly complex biological systems, especially when using low amounts of starting material. Current methods for phosphopeptide enrichment, e.g., Immobilized Metal ion Affinity Chromatography and titanium dioxide chromatography provide varying degrees of selectivity and specificity for phosphopeptide enrichment. The number of multi-phosphorylated peptides identified in most published studies is rather low. Here we describe a protocol for a strategy that separates mono-phosphorylated peptides from multiply phosphorylated peptides using Sequential elution from Immobilized Metal ion Affinity Chromatography. The method relies on the initial enrichment and separation of mono- and multi-phosphorylated peptides using Immobilized Metal ion Affinity Chromatography and a subsequent enrichment of the mono-phosphorylated peptides using titanium dioxide chromatography. The two separate phosphopeptide fractions are then subsequently analyzed by mass spectrometric methods optimized for mono-phosphorylated and multi-phosphorylated peptides, respectively, resulting in improved identification of especially multi-phosphorylated peptides from a minimum amount of starting material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li S, Dass C (1999) Iron(III)-immobilized metal ion affinity chromatography and mass spectrometry for the purification and characterization of synthetic phosphopeptides. Anal Biochem 270:9–14

    Article  CAS  PubMed  Google Scholar 

  2. Neville DC, Rozanas CR, Price EM, Gruis DB, Verkman AS, Townsend RR (1997) Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci 6:2436–2445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71:2883–2892

    Article  CAS  PubMed  Google Scholar 

  4. Kuroda I, Shintani Y, Motokawa M, Abe S, Furuno M (2004) Phosphopeptide-selective column-switching RP-HPLC with a titania precolumn. Anal Sci 20:1313–1319

    Article  CAS  PubMed  Google Scholar 

  5. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  CAS  PubMed  Google Scholar 

  6. Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943

    Article  CAS  PubMed  Google Scholar 

  7. Sano A, Nakamura H (2004) Chemo-affinity of titania for the column-switching HPLC analysis of phosphopeptides. Anal Sci 20:565

    Article  CAS  PubMed  Google Scholar 

  8. Zhou HL, Watts JD, Aebersold RA (2001) A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol 19:375–378

    Article  CAS  PubMed  Google Scholar 

  9. Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4:231–237

    Article  CAS  PubMed  Google Scholar 

  10. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101:12130–12135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC - a phosphoproteomic strategy for the rapid separation of mono-phosphorylated from multiply phosphorylated peptides. Mol Cell Proteom 7(4):661–671

    Article  CAS  Google Scholar 

  12. Schroeder MJ, Shabanowitz J, Schwartz JC, Hunt DF, Coon JJ (2004) A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem 76:3590–3598

    Article  CAS  PubMed  Google Scholar 

  13. Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4:709–712

    Article  CAS  PubMed  Google Scholar 

  14. Chalmers MJ, Hakansson K, Johnson R, Smith R, Shen J, Emmett MR, Marshall AG (2004) Protein kinase A phosphorylation characterized by tandem Fourier transform ion cyclotron resonance mass spectrometry. Proteomics 4:970–981

    Article  CAS  PubMed  Google Scholar 

  15. Schroeder MJ, Webb DJ, Shabanowitz J, Horwitz AF, Hunt DF (2005) Methods for the detection of paxillin post-translational modifications and interacting proteins by mass spectrometry. J Proteome Res 4:1832–1841

    Article  CAS  PubMed  Google Scholar 

  16. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305

    Article  CAS  PubMed  Google Scholar 

  17. Engholm-Keller K, Birck P, Storling J, Pociot F, Mandrup-Poulsen T, Larsen MR (2012) TiSH--a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC. J Proteomics 75:5749–5761

    Article  CAS  PubMed  Google Scholar 

  18. Engholm-Keller K, Hansen TA, Palmisano G, Larsen MR (2011) Multidimensional strategy for sensitive phosphoproteomics incorporating protein prefractionation combined with SIMAC, HILIC, and TiO(2) chromatography applied to proximal EGF signaling. J Proteome Res 10:5383–5397

    Article  CAS  PubMed  Google Scholar 

  19. Gobom J, Nordhoff E, Mirgorodskaya E, Ekman R, Roepstorff P (1999) Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 34:105–116

    Article  CAS  PubMed  Google Scholar 

  20. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75:663–670

    Article  CAS  PubMed  Google Scholar 

  21. Liu S, Zhang C, Campbell JL, Zhang H, Yeung KK, Han VK, Lajoie GA (2005) Formation of phosphopeptide-metal ion complexes in liquid chromatography/electrospray mass spectrometry and their influence on phosphopeptide detection. Rapid Commun Mass Spectrom 19:2747–2756

    Article  CAS  PubMed  Google Scholar 

  22. Engholm-Keller K, Larsen MR (2011) Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds--applications in acidic modification-specific proteomics. J Proteomics 75:317–328

    Article  CAS  PubMed  Google Scholar 

  23. Jensen SS, Larsen MR (2007) Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Commun Mass Spectrom 21:3635–3645

    Article  CAS  PubMed  Google Scholar 

  24. Calvano CD, Jensen ON, Zambonin CG (2009) Selective extraction of phospholipids from dairy products by micro-solid phase extraction based on titanium dioxide microcolumns followed by MALDI-TOF-MS analysis. Anal Bioanal Chem 394:1453–1461

    Article  CAS  PubMed  Google Scholar 

  25. Thingholm TE, Jensen ON, Larsen MR (2009) Enrichment and separation of mono- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis. Methods Mol Biol 527:67–78, xi

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Danish Natural Science and Medical Research Councils (grant no. 10-082195 (T.E.T)) and the Lundbeck Foundation (M.R.L—Junior Group Leader Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Larsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thingholm, T.E., Larsen, M.R. (2016). Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides. In: von Stechow, L. (eds) Phospho-Proteomics. Methods in Molecular Biology, vol 1355. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3049-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3049-4_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3048-7

  • Online ISBN: 978-1-4939-3049-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics