Skip to main content

Development of Serum-Free Media for Lepidopteran Insect Cell Lines

  • Protocol
Baculovirus and Insect Cell Expression Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1350))

Abstract

Baculovirus-based Insect Cell Technology (ICT) is widely used for the expression of recombinant heterologous proteins and baculovirus bioinsecticides, and has recently gained momentum as a commercial manufacturing platform for human and veterinary vaccines. The three key components of ICT are the Lepidopteran insect cell line, the baculovirus vector, and the growth medium. Insect cell growth media have evolved significantly in the past five decades, from basal media supplemented with hemolymph or animal serum, to highly optimized serum-free media and feeds (SFM and SFF) capable of supporting very high cell densities and recombinant protein yields. The substitution of animal sera with protein hydrolysates in SFM results in greatly reduced medium costs and much improved process scalability. However, both sera and hydrolysates share the disadvantage of lot-to-lot variability, which is detrimental to process reproducibility. Hence, the industrialization of ICT would benefit greatly from chemically defined media (CDM) for insect cells, which are not yet commercially available. On the other hand, applications such as baculovirus bioinsecticides would need truly low cost serum-free media and feeds (LC-SFM and LC-SFF) for economic viability, which require the substitution of a majority of expensive added amino acids with even higher levels of hydrolysates, hence increasing the risk of a variable process. CDM developments are anticipated to benefit both conventional and low cost ICT applications, by identifying key growth factors in hydrolysates for more targeted media and feed design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23:567–575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Jarvis DL (2009) Baculovirus-insect cell expression systems. In: Burgess RR, Deutscher MP (eds) Methods enzymol, 2nd edn. Academic Press (Elsevier), Amsterdam, pp 191–222

    Google Scholar 

  3. Mena JA, Kamen AA (2011) Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 10:1063–1081

    Article  PubMed  CAS  Google Scholar 

  4. Almeida AF, Macedo GR, Chan LCL et al (2010) Kinetic analysis of in vitro production of wild-type Spodoptera frugiperda nucleopolyhedrovirus. Braz Arch Biol Technol 53:285–291

    Article  Google Scholar 

  5. Chakraborty S, Monsour C, Teakle R et al (1999) Yield, biological activity, and field performance of a wild-type Helicoverpa nucleopolyhedrovirus produced in H-zea cell cultures. J Invertebr Pathol 73:199–205

    Article  PubMed  CAS  Google Scholar 

  6. Micheloud GA, Gioria VV, Eberhardt I et al (2011) Production of the Anticarsia gemmatalis multiple nucleopolyhedrovirus in serum-free suspension cultures of the saUFL-AG-286 cell line in stirred reactor and airlift reactor. J Virol Methods 178:106–116

    Article  PubMed  CAS  Google Scholar 

  7. Slavicek JM, Hayes-Plazolles N, Kelly ME (2001) Identification of a Lymantria dispar nucleopolyhedrovirus isolate that does not accumulate few-polyhedra mutants during extended serial passage in cell culture. Biol Control 22:159–168

    Article  Google Scholar 

  8. Schlaeger EJ (1996) Medium design for insect cell culture. Cytotechnology 20:57–70

    Article  PubMed  CAS  Google Scholar 

  9. Mitsuhashi J (1994) Insect cell culture media. In: Maramorosch K, McIntosh AH (eds) Arthropod cell culture systems. CRC Press, Boca Raton, pp 1–17

    Google Scholar 

  10. Eagle H (1955) Nutrition needs of mammalian cells in tissue culture. Science 122:501–504

    Article  PubMed  CAS  Google Scholar 

  11. Wyatt SS (1956) Culture in vitro of tissue from the silkworm, Bombyx mori L. J Gen Physiol 39:841–852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ingebrigtsen R (1912) Studies upon the characteristics of different culture media and their influence upon the growth of tissue outside of the organism. J Exp Med 16:421–431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lieberman I, Ove P (1959) Growth factors for mammalian cells in culture. J Biol Chem 234:2754–2758

    PubMed  CAS  Google Scholar 

  14. Ginsberg HS, Gold E, Jordan WS (1955) Tryptose phosphate broth as supplementary factor for maintenance of HeLa cell tissue cultures. Proc Soc Exp Biol Med 89:66–71

    Article  PubMed  CAS  Google Scholar 

  15. Mizrahi A (1975) Pluronic polyols in human lymphocyte cell line cultures. J Clin Microbiol 2:11–13

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Mizrahi A (1983) Oxygen in human lymphoblastoid cell line cultures and effect of polymers in agitated and aerated cultures. Dev Biol Stand 55:93–102

    PubMed  CAS  Google Scholar 

  17. Grace TDC (1962) Establishment of four strains of cells from insect tissue grown in vitro. Nature 195:788–789

    Article  PubMed  CAS  Google Scholar 

  18. Hink WF (1970) Established insect cell line from the cabbage looper, Trichoplusia ni. Nature 226:466–467

    Article  PubMed  CAS  Google Scholar 

  19. Gardiner GR, Stockdale H (1975) Two tissue culture media for production of Lepidopteran cells and nuclear polyhydrosis viruses. J Invertebr Pathol 25:363–370

    Article  Google Scholar 

  20. Weiss SA, Smith GC, Kalter SS et al (1981) Improved method for the production of insect cell cultures in large volume. In Vitro 17:495–502

    Article  CAS  Google Scholar 

  21. Fox CH, Sanford KK (1975) Chemical analyses of mammalian sera commonly used as supplements for tissue culture media. Tissue Cult Assoc Manual 1:233–237

    Article  CAS  Google Scholar 

  22. Honn KV, Singley JA, Chavin W (1975) Fetal bovine serum - a multivariate standard. Proc Soc Exp Biol Med 149:344–347

    Article  PubMed  CAS  Google Scholar 

  23. Barrett S, Jacobia S (2011) Cell culture medium comprising small peptides. International Publication Number WO 2011/133902 A2. Filing date 22 April 2011. Publication date 27 October 2011: Life Technologies Corp.

    Google Scholar 

  24. Qi YM, Greenfield PF, Reid S (1996) Evaluation of a simple protein free medium that supports high levels of monoclonal antibody production. Cytotechnology 21:95–109

    Article  PubMed  CAS  Google Scholar 

  25. Siemensma A, Babcock J, Wilcox C et al (2010) Towards an understanding of how protein hydrolysates stimulate more efficient biosynthesis in cultured cells. In: Pasupuleti VK, Demain AL (eds) Protein hydrolysates in biotechnology. Springer Science + Business Media B.V, Dordrecht, Netherlands, pp 33–54

    Google Scholar 

  26. van der Valk J, Brunner D, De Smet K et al (2010) Optimization of chemically defined cell culture media - replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 24:1053–1063

    Article  PubMed  CAS  Google Scholar 

  27. Mitsuhashi J (1989) Nutritional requirements of insect cells in vitro. In: Mitsuhashi J (ed) Invertebrate cell system applications. CRC Press, Boca Raton, FL, pp 3–20

    Google Scholar 

  28. McIntosh AH, Evers D, Shamy R (1976) A toxic substance in fetal bovine serum. In Vitro 12:302

    Google Scholar 

  29. Zhang JY, Reddy J, Buckland B et al (2003) Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process. Biotechnol Bioeng 82:640–652

    Article  PubMed  CAS  Google Scholar 

  30. Schlaeger EJ (1996) The protein hydrolysate, Primatone RL, is a cost-effective multiple growth promoter of mammalian cell culture in serum-containing and serum-free media and displays anti-apoptosis properties. J Immunol Methods 194:191–199

    Article  PubMed  CAS  Google Scholar 

  31. Pasupuleti VK, Braun S (2010) State of the art manufacturing of protein hydrolysates. In: Pasupuleti VK, Demain AL (eds) Protein hydrolysates in biotechnology. Springer Science + Business Media B.V, Dordrecht, Netherlands, pp 11–32

    Chapter  Google Scholar 

  32. Ikonomou L, Bastin G, Schneider YJ et al (2001) Design of an efficient medium for insect cell growth and recombinant protein production. In Vitro Cell Dev Biol Anim 37:549–559

    Article  PubMed  CAS  Google Scholar 

  33. Shen CF, Kiyota T, Jardin B et al (2007) Characterization of yeastolate fractions that promote insect cell growth and recombinant protein production. Cytotechnology 54:25–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Huynh HT, Chan LCL, Tran TTB et al (2012) Improving the robustness of a low-cost insect cell medium for baculovirus biopesticides production, via hydrolysate streamlining using a tube bioreactor-based statistical optimization routine. Biotechnol Prog 28:788–802

    Article  PubMed  CAS  Google Scholar 

  35. Gilbert RS, Nagano Y, Yokota T et al (1996) Effect of lipids on insect cell growth and expression of recombinant proteins in serum-free medium. Cytotechnology 22:211–216

    Article  PubMed  CAS  Google Scholar 

  36. Inlow D, Shauger A, Maiorella B (1989) Insect cell culture and baculovirus propagation in protein-free medium. J Tissue Cult Methods 12:13–16

    Article  Google Scholar 

  37. Maiorella B, Inlow D, Shauger A et al (1988) Large scale insect cell-culture for recombinant protein production. Biotechnology 6:1406–1410

    Article  CAS  Google Scholar 

  38. Francis GL (2010) Albumin and mammalian cell culture: implications for biotechnology applications. Cytotechnology 62:1–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Keenan J, Pearson D, Clynes M (2006) The role of recombinant proteins in the development of serum-free media. Cytotechnology 50:49–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Donaldson MS, Shuler ML (1998) Low-cost serum-free medium for the BTI-Tn5B1-4 insect cell line. Biotechnol Prog 14:573–579

    Article  PubMed  CAS  Google Scholar 

  41. Reid S, Lua LHL (2005) Method of producing baculovirus. International Publication Number WO2005/045014 A1. Filing date 10 November 2004. Publication date 19 May 2005

    Google Scholar 

  42. Micheloud GA, Gioria VV, Perez G et al (2009) Production of occlusion bodies of Anticarsia gemmatalis multiple nucleopolyhedrovirus in serum-free suspension cultures of the saUFL-AG-286 cell line: influence of infection conditions and statistical optimization. J Virol Methods 162:258–266

    Article  PubMed  CAS  Google Scholar 

  43. Weiss SA, Whitford WG, Godwin GP et al (1992) Media design: optimizing of recombinant proteins in serum-free culture. In: Vlak JM, Schlaeger EJ, Bernard AR (eds) Baculovirus and recombinant protein production processes. Editiones Roche, Basel, Switzerland, pp 306–314

    Google Scholar 

  44. Nguyen Q, Qi YM, Wu Y et al (2011) In vitro production of Helicoverpa baculovirus biopesticides-automated selection of insect cell clones for manufacturing and systems biology studies. J Virol Methods 175:197–205

    Article  PubMed  CAS  Google Scholar 

  45. Marteijn RCL, Jurrius O, Dhont J et al (2003) Optimization of a feed medium for fed-batch culture of insect cells using a genetic algorithm. Biotechnol Bioeng 81:269–278

    Article  PubMed  CAS  Google Scholar 

  46. Burteau CC, Verhoeye FR, Mols JF et al (2003) Fortification of a protein-free cell culture medium with plant peptones improves cultivation and productivity of an interferon-gamma-producing CHO cell line. In Vitro Cell Dev Biol Anim 39:291–296

    Article  PubMed  CAS  Google Scholar 

  47. Agathos SN (2010) Insect cell culture. In: Baltz RH, Davies JE, Demain AL (eds) Manual of industrial microbiology and biotechnology, 3rd edn. American Society of Microbiology, Washington, DC, pp 212–222

    Google Scholar 

  48. Kasprow RP, Lange AJ, Kirwan DJ (1998) Correlation of fermentation yield with yeast extract composition as characterized by near-infrared spectroscopy. Biotechnol Prog 14:318–325

    Article  PubMed  CAS  Google Scholar 

  49. Zhang J, Kalogerakis N, Behie LA (1994) Optimization of the physiochemical parameters for the culture of Bombyx-mori insect cells used in recombinant protein-production. J Biotechnol 33:249–258

    Article  PubMed  CAS  Google Scholar 

  50. Lu C, Gonzalez C, Gleason J et al (2007) A T-flask based screening platform for evaluating and identifying plant hydrolysates for a fed-batch cell culture process. Cytotechnology 55:15–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Stavroulakis DA, Kalogerakis N, Behie LA et al (1991) Kinetic data for the BM-5 insect cell line in repeated-batch suspension cultures. Biotechnol Bioeng 38:116–126

    Article  PubMed  CAS  Google Scholar 

  52. Wu SC, Dale BE, Liao JC (1993) Kinetic characterization of baculovirus-induced cell-death in insect cell-cultures. Biotechnol Bioeng 41:104–110

    Article  PubMed  CAS  Google Scholar 

  53. Landureau JC (1976) Insect cell and tissue culture as a tool for developmental biology. In: Kurstak E, Maramorosch K (eds) Invertebrate culture, applications in medicine, biology and agriculture. Academic, New York, pp 101–130

    Google Scholar 

  54. Wilkie GE, Stockdale H, Pirt SV (1980) Chemically-defined media for production of insect cells and viruses in vitro. Dev Biol Stand 46:29–37

    PubMed  CAS  Google Scholar 

  55. Mitsuhashi J (1996) Preliminary formulation of a chemically defined medium for insect cell cultures. Methods Cell Sci 18:293–298

    Article  Google Scholar 

  56. Wong KTK, Peter CH, Greenfield PF et al (1996) Low multiplicity infection of insect cells with a recombinant baculovirus: the cell yield concept. Biotechnol Bioeng 49:659–666

    Article  PubMed  CAS  Google Scholar 

  57. Radford KM, Reid S, Greenfield PF (1997) Substrate limitation in the baculovirus expression vector system. Biotechnol Bioeng 56:32–44

    Article  PubMed  CAS  Google Scholar 

  58. Gorfien SF, Fike RM, Godwin GP et al (2012) Serum-free mammalian cell culture medium, and uses thereof. US Patent Number 8,198,084 B2. Filing date 14 June 2005. Publication date 12 June 2012. Life Technologies Corporation

    Google Scholar 

  59. Epstein D, Monsell R, Horwitz J et al (2009) Chemically defined media compositions. US Patent Number 7,598,083 B2. Filing date 27 October 2005. Publication date 6 October 2009

    Google Scholar 

  60. Franek F, Eckschlager T, Katinger H (2003) Enhancement of monoclonal antibody production by lysine-containing peptides. Biotechnol Prog 19:169–174

    Article  PubMed  CAS  Google Scholar 

  61. Popham HJR, Shelby KS (2007) Effect of inorganic and organic forms of selenium supplementation on development of larval Heliothis virescens. Entomol Exp Appl 125:171–178

    Article  CAS  Google Scholar 

  62. Chan LCL, Young PR, Bletchly C et al (2002) Production of the baculovirus-expressed dengue virus glycoprotein NS1 can be improved dramatically with optimised regimes for fed-batch cultures and the addition of the insect moulting hormone, 20-Hydroxyecdysone. J Virol Methods 105:87–98

    Article  PubMed  CAS  Google Scholar 

  63. Chakraborty S, Greenfield P, Reid S (1996) In vitro production studies with a wild-type Helicoverpa baculovirus. Cytotechnology 22:217–224

    Article  PubMed  CAS  Google Scholar 

  64. Bedard C, Kamen A, Tom R et al (1994) Maximization of recombinant protein yield in the insect-cell baculovirus system by one-time addition of nutrients to high-density batch cultures. Cytotechnology 15:129–138

    Article  PubMed  CAS  Google Scholar 

  65. Chan LCL, Greenfield PF, Reid S (1998) Optimising fed-batch production of recombinant proteins using the baculovirus expression vector system. Biotechnol Bioeng 59:178–188

    Article  PubMed  CAS  Google Scholar 

  66. Elias CB, Zeiser A, Bedard C et al (2000) Enhanced growth of Sf-9 cells to a maximum density of 5.2 x 107 cells per mL and production of beta-galactosidase at high cell density by fed batch culture. Biotechnol Bioeng 68:381–388

    Article  PubMed  CAS  Google Scholar 

  67. Nguyen B, Jarnagin K, Williams S et al (1993) Fed-batch culture of insect cells - a method to increase the yield of recombinant human nerve growth-factor (RHNGF) in the baculovirus expression system. J Biotechnol 31:205–217

    Article  PubMed  CAS  Google Scholar 

  68. Bedard C, Perret S, Kamen AA (1997) Fed-batch culture of Sf-9 cells supports 3x10(7) cells per ml and improves baculovirus-expressed recombinant protein yields. Biotechnol Lett 19:629–632

    Article  CAS  Google Scholar 

  69. Chiou TW, Hsieh YC, Ho CS (2000) High density culture of insect cells using rational medium design and feeding strategy. Bioproc Eng 22:483–491

    Article  CAS  Google Scholar 

  70. Jardin BA, Montes J, Lanthler S et al (2007) High cell density fed batch and perfusion processes for stable non-viral expression of secreted alkaline phosphatase (SEAP) using insect cells: Comparison to a batch Sf-9-BEV system. Biotechnol Bioeng 97:332–345

    Article  PubMed  CAS  Google Scholar 

  71. Meghrous J, Mahmoud W, Jacob D et al (2010) Development of a simple and high-yielding fed-batch process for the production of influenza vaccines. Vaccine 28:309–316

    Article  CAS  Google Scholar 

  72. Mena JA, Aucoin MG, Montes J et al (2010) Improving adeno-associated vector yield in high density insect cell cultures. J Gene Med 12:157–167

    Article  PubMed  CAS  Google Scholar 

  73. Power JF, Reid S, Radford KM et al (1994) Modeling and optimization of the baculovirus expression vector system in batch suspension culture. Biotechnol Bioeng 44:710–719

    Article  PubMed  CAS  Google Scholar 

  74. Huang YM, Hu WW, Rustandi E et al (2010) Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol Prog 26:1400–1410

    Article  PubMed  CAS  Google Scholar 

  75. Jang JD, Sanderson CS, Chan LCL et al (2000) Structured modeling of recombinant protein production in batch and fed-batch culture of baculovirus-infected insect cells. Cytotechnology 34:71–82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Bedard C, Tom R, Kamen A (1993) Growth, nutrient consumption, and end-product accumulation in Sf-9 and BTI-EAA insect-cell cultures - insights into growth limitation and metabolism. Biotechnol Prog 9:615–624

    Article  PubMed  CAS  Google Scholar 

  77. Ikonomou L, Schneider YJ, Agathos SN (2003) Insect cell culture for industrial production of recombinant proteins. Appl Microbiol Biotechnol 62:1–20

    Article  PubMed  CAS  Google Scholar 

  78. Neermann J, Wagner R (1996) Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. J Cell Physiol 166:152–169

    Article  PubMed  CAS  Google Scholar 

  79. Rhiel M, Mitchell-Logean CM, Murhammer DW (1997) Comparison of Trichoplusia ni BTI-Tn-5B1-4 (High Five((TM))) and Spodoptera frugiperda Sf-9 insect cell line metabolism in suspension cultures. Biotechnol Bioeng 55:909–920

    Article  PubMed  CAS  Google Scholar 

  80. Nguyen Q, Palfreyman RW, Chan LCL et al (2012) Transcriptome sequencing of and microarray development for a Helicoverpa zea cell line to investigate in vitro insect cell-baculovirus interactions. PLoS One. doi:10.1371/journal.pone.0036324

    Google Scholar 

  81. Tran TTB, Dietmair S, Chan LCL et al (2012) Development of quenching and washing protocols for quantitative intracellular metabolite analysis of uninfected and baculovirus-infected insect cells. Methods 56:396–407

    Article  PubMed  CAS  Google Scholar 

  82. Bernal V, Carinhas N, Yokomizo AY et al (2009) Cell density effect in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol Bioeng 104:162–180

    Article  PubMed  CAS  Google Scholar 

  83. Xie QL, Michel P, Baldi L et al (2011) TubeSpin bioreactor 50 for the high-density cultivation of Sf-9 insect cells in suspension. Biotechnol Lett 33:897–902

    Article  PubMed  CAS  Google Scholar 

  84. Nielsen LK, Smyth GK, Greenfield PF (1991) Hemacytometer cell count distributions-implications of non-poisson behavior. Biotechnol Prog 7:560–563

    Article  Google Scholar 

  85. Mitsuhashi J, Maramorosch K (1964) Leafhopper tissue culture - embryonic nymphal and imaginal tissues from aseptic insects. Contrib Boyce Thompson Inst 22:435–460

    Google Scholar 

  86. Mitsuhashi J (1982) Continuous cultures of insect cell-lines in media free of sera. Appl Entomol Zool 17:575–581

    Google Scholar 

  87. Goodwin RH (1975) Insect cell culture - improved media and methods for initiating attached cell lines from Lepidoptera. In Vitro 11:369–378

    Article  PubMed  CAS  Google Scholar 

  88. Chakraborty S, Reid S (1999) Serial passage of a Helicoverpa armigera nucleopolyhedrovirus in Helicoverpa zea cell cultures. J Invertebr Pathol 73:303–308

    Article  PubMed  CAS  Google Scholar 

  89. Mitsuhashi J, Goodwin RH (1989) The serum-free culture of insect cells in vitro. In: Mitsuhashi J (ed) Invertebrate cell system applications, vol 1. CRC Press, Boca Raton, FL, pp 31–43

    Google Scholar 

  90. Lua LHL, Reid S (2003) Growth, viral production and metabolism of a Helicoverpa zea cell line in serum-free culture. Cytotechnology 42:109–120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Taticek RA, Choi C, Phan SE et al (2001) Comparison of growth and recombinant protein expression in two different insect cell lines in attached and suspension culture. Biotechnol Prog 17:676–684

    Article  PubMed  CAS  Google Scholar 

  92. McKenna KK, Shuler ML, Granados RR (1997) Increased virus production in suspension culture by a Trichoplusia ni cell line in serum-free media. Biotechnol Prog 13:805–809

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Reid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chan, L.C.L., Reid, S. (2016). Development of Serum-Free Media for Lepidopteran Insect Cell Lines. In: Murhammer, D. (eds) Baculovirus and Insect Cell Expression Protocols. Methods in Molecular Biology, vol 1350. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3043-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3043-2_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3042-5

  • Online ISBN: 978-1-4939-3043-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics