Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1350))

Abstract

The development of baculovirus expression vector systems has accompanied a rapid expansion of our knowledge about the genes, their function and regulation in insect cells. Classification of these viruses has also been refined as we learn more about differences in gene content between isolates, how this affects virus structure and their replication in insect larvae. Baculovirus gene expression occurs in an ordered cascade, regulated by early, late and very late gene promoters. There is now a detailed knowledge of these promoter elements and how they interact first with host cell-encoded RNA polymerases and later with virus-encoded enzymes. The composition of this virus RNA polymerase is known. The virus replication process culminates in the very high level expression of both polyhedrin and p10 gene products in the latter stages of infection. It has also been realized that the insect host cell has innate defenses against baculoviruses in the form of an apoptotic response to virus invasion. Baculoviruses counter this by encoding apoptotic-suppressors, which also appear to have a role in determining the host range of the virus. Also of importance to our understanding of baculovirus expression systems is how the virus can accumulate mutations within genes that affect recombinant protein yield in cell culture. The summary in this chapter is not exhaustive, but should provide a good preparation to those wishing to use this highly successful gene expression system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jehle J, Blissard G, Bonning B et al (2006) On the classification and nomenclature of Baculoviruses: a proposal for revision. Arch Virol 151:1257–1266

    Article  PubMed  CAS  Google Scholar 

  2. Zanotto P, Kessing B, Maruniak J (1993) Phylogenetic interrelationships among baculoviruses: evolutionary rates and host association. J Invertebr Pathol 62:147–164

    Article  PubMed  CAS  Google Scholar 

  3. Couch J (1974) An enzootic nuclear polyhedrosis virus of pink shrimp: ultrastructure, prevalence, and enhancement. J Invertebr Pathol 24:311–331

    Article  PubMed  CAS  Google Scholar 

  4. Couch J (1974) Free and occluded virus, similar to Baculovirus, in hepatopancreas of pink shrimp. Nature 247:229–231

    Article  Google Scholar 

  5. Mari J, Bonami J, Poulos B et al (1993) Preliminary characterization and partial cloning of the genome of a baculovirus from Penaeus monodon (PmSNPV = MBV). Dis Aquat Organ 16:207–215

    Article  CAS  Google Scholar 

  6. Wilson M, Mainprize T, Friesen P et al (1987) Location, transcription and sequence of a baculovirus gene encoding a small arginine-rich polypeptide. J Virol 61:661–666

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Thiem S, Miller L (1989) Identification, sequence, and transcriptional mapping of the major capsid protein gene of the baculovirus Autographa californica nuclear polyhedrosis virus. J Virol 63:2008–2018

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Smith G, Summers M (1978) Analysis of baculovirus genomes with restriction endonucleases. Virology 89:517–527

    Article  PubMed  CAS  Google Scholar 

  9. Summers M, Volkman L (1976) Comparison of biophysical and morphological properties of occluded and extracellular nonoccluded baculovirus from in vivo and in vitro host systems. J Virol 17:962–972

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Volkman L, Summers M, Hsieh C (1976) Occluded and nonoccluded nuclear polyhedrosis virus grown in Trichoplusia ni: comparative neutralization, comparative infectivity, and in vitro growth studies. J Virol 19:820–832

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Volkman L (1983) Occluded and budded Autographa californica nuclear polyhedrosis virus: immunological relatedness of structural proteins. J Virol 46:221–229

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Volkman L, Goldsmith P (1984) Budded Autographa californica NPV 64K protein: further biochemical analysis and effects of postimmunoprecipitation sample preparation conditions. Virology 139:295

    Article  PubMed  CAS  Google Scholar 

  13. Braunagel S, Summers M (1994) Autographa californica nuclear polyhedrosis virus, PDV, and ECV viral envelopes and nucleocapsids: structural proteins, antigens, lipid and fatty acid profiles. Virology 202:315–328

    Article  PubMed  CAS  Google Scholar 

  14. Volkman L, Goldsmith P, Hess R et al (1984) Neutralization of budded Autographa californica NPV by a monoclonal antibody: identification of the target antigen. Virology 133:354–362

    Article  PubMed  CAS  Google Scholar 

  15. Blissard G, Rohrmann G (1989) Location, sequence, transcriptional mapping, and temporal expression of the gp64 envelope glycoprotein of the Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus. Virology 170:537–555

    Article  PubMed  CAS  Google Scholar 

  16. Pearson M, Groten C, Rohrmann G (2000) Identification of the Lymantria dispar nucleopolyhedrovirus envelope fusion protein provides evidence for a phylogenetic division of the Baculoviridae. J Virol 74:6126–6131

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Pearson M, Russell R, Rohrmann G (2001) Characterization of a baculovirus-encoded protein that is associated with infected cell membranes and budded virions. Virology 291:22–31

    Article  PubMed  CAS  Google Scholar 

  18. Kuzio J, Jaques R, Faulkner P (1989) Identification of p74, a gene essential for virulence of baculovirus occlusion bodies. Virology 173:759–763

    Article  PubMed  CAS  Google Scholar 

  19. Faulkner P, Kuzio J, Williams G et al (1997) Analysis of p74, a PDV envelope protein of Autographa californica nucleopolyhedrovirus required for occlusion body infectivity in vivo. J Gen Virol 78:3091–3100

    Article  PubMed  CAS  Google Scholar 

  20. Kikhno I, Gutiérrez S, Croizier L et al (2002) Characterization of pif, a gene required for the per os infectivity of Spodoptera littoralis nucleopolyhedrovirus. J Gen Virol 83:3013–3022

    Article  PubMed  CAS  Google Scholar 

  21. Pijlman G, Pruijssers J, Vlak J (2003) Identification of pif-2, a third conserved baculovirus gene required for per os infection of insects. J Gen Virol 84:2041–2049

    Article  PubMed  CAS  Google Scholar 

  22. Fang M, Nie Y, Harris S et al (2009) Autographa californica nucleopolyhedrovirus core gene ac96 encodes a per os infectivity factor (pif-4). J Virol 83:12569–12578

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Harrison R, Sparks W, Bonning B (2010) Autographa californica nucleopolyhedrovirus ODV-E56 envelope protein is required for oral infectivity and can be substituted functionally by Rachiplusia ou multiple nucleopolyhedrovirus ODV-E56. J Gen Virol 91:1173–1182

    Article  PubMed  CAS  Google Scholar 

  24. Xiang X, Chen L, Guo A et al (2011) The Bombyx mori nucleopolyhedrovirus (BmNPV) ODV-E56 envelope protein is also a per os infectivity factor. Virus Res 155:69–75

    Article  PubMed  CAS  Google Scholar 

  25. Peng K, van Oers M, Hu Z et al (2010) Baculovirus per os infectivity factors form a complex on the surface of occlusion-derived virus. J Virol 84:9497–9504

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Russell R, Rohrmann G (1993) A 25-kDa protein is associated with the envelopes of occluded baculovirus virions. Virology 195:532–540

    Article  PubMed  CAS  Google Scholar 

  27. Hong T, Braunagel S, Summers M (1994) Transcription, translation, and cellular localization of PDV-E66: a structural protein of the PDV envelope of Autographa californica nuclear polyhedrosis virus. Virology 204:210–222

    Article  PubMed  CAS  Google Scholar 

  28. Braunagel S, Elton D, Ma H et al (1996) Identification and analysis of an Autographa californica nuclear polyhedrosis virus structural protein of the occlusion -derived virus envelope: ODV-E56. Virology 217:97–110

    Article  PubMed  CAS  Google Scholar 

  29. Braunagel S, He H, Ramamurthy P et al (1996) Transcription, translation, and cellular localization of three Autographa californica nuclear polyhedrosis virus structural proteins: ODV-E18, ODV-E35, and ODV-EC27. Virology 222:100–114

    Article  PubMed  CAS  Google Scholar 

  30. Slack J, Dougherty E, Lawrence S (2001) A study of the Autographa californica multiple nucleopolyhedrovirus ODV envelope protein p74 using a GFP tag. J Gen Virol 82:2279–2287

    Article  PubMed  CAS  Google Scholar 

  31. Summers M, Arnott H (1969) Ultrastructural studies on inclusion formation and virus occlusion in nuclear polyhedrosis and granulosis virus-infected cells of Trichoplusia ni. J Ultrastruct Res 28:462–480

    Article  PubMed  CAS  Google Scholar 

  32. Tanada Y, Hess R (1976) Development of nuclear polyhedrosis virus in midgut cells and penetration of the virus into the hemocoel of the armyworm, Pseudaletia unipuncta. J Invertebr Pathol 28:67–76

    Article  Google Scholar 

  33. Hong T, Summers M, Braunagel S (1997) N-terminal sequences from Autographa californica nuclear polyhedrosis virus envelope proteins ODV-E66 and ODV-E25 are sufficient to direct reporter proteins to the nuclear envelope, intranuclear microvesicles and the envelope of occlusion derived virus. Proc Natl Acad Sci U S A 94:4050–4055

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Whitford M, Faulkner P (1992) A structural polypeptide of the baculovirus Autographa californica nuclear polyhedrosis virus contains O-linked N-acetylglucosamine. J Virol 66:3324–3329

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Olszewski J, Miller L (1997) A role for baculovirus GP41 in budded virus production. Virology 233:292–301

    Article  PubMed  CAS  Google Scholar 

  36. Belyavskyi M, Braunagel S, Summers M (1998) The structural protein of ODV-EC27 of Autographa californica nucleopolyhedrosis is a multifunctional viral cyclin. Proc Natl Acad Sci U S A 95:11205–11210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Beniya H, Braunagel S, Summers M (1998) Autographa californica nuclear polyhedrosis virus: subcellular localization and protein trafficking of BV/ODV-E26 to intranuclear membranes and viral envelopes. Virology 240:64–75

    Article  PubMed  CAS  Google Scholar 

  38. Braunagel S, Russell W, Rosas-Acosta G et al (2003) Determination of the protein composition of the occlusion-derived virus of Autographa californica nucleopolyhedrovirus. Proc Natl Acad Sci 100:9797–9802

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Wang R, Deng F, Hou D et al (2010) Proteomics of the Autographa californica nucleopolyhedrovirus budded virions. J Virol 84:7233–7242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Jarvis D, Bohlmeyer D, Garcia A Jr (1992) Enhancement of polyhedrin nuclear localisation during baculovirus infection. J Virol 66:6903–6911

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Hu Z, Luijckx T, van Dinten L et al (1999) Specificity of polyhedrin in the generation of baculovirus occlusion bodies. J Gen Virol 80:1045–1053

    Article  PubMed  CAS  Google Scholar 

  42. Minion F, Coons L, Broome J (1979) Characterization of the polyhedral envelope of the nuclear polyhedrosis virus of Heliothis virescens. J Invertebr Pathol 34:303–307

    Article  CAS  Google Scholar 

  43. Whitt M, Manning J (1988) A phosphorylated 34-kDa protein and a subpopulation of polyhedrin are thiol linked to the carbohydrate layer surrounding a baculovirus occlusion body. Virology 163:33–42

    Article  PubMed  CAS  Google Scholar 

  44. Williams G, Rohel D, Kuzio J et al (1989) A cytopathological investigation of Autographa californica nuclear polyhedrosis virus p10 gene function using insertion/deletion mutants. J Gen Virol 70:187–202

    Article  PubMed  CAS  Google Scholar 

  45. Zuidema D, Klinge-Roode E, van Lent J et al (1989) Construction and analysis of an Autographa californica nuclear polyhedrosis virus mutant lacking the polyhedral envelope. Virology 173:98–108

    Article  PubMed  CAS  Google Scholar 

  46. Russell R, Pearson M, Rohrmann G (1991) Immunoelectron microscopic examination of Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus-infected Lymantria dispar cells: time course and localization of major polyhedrin-associated proteins. J Gen Virol 72:275–283

    Article  PubMed  CAS  Google Scholar 

  47. Wilson J, Hill J, Kuzio J et al (1995) Characterization of the baculovirus Choristoneura fumiferana multicapsid nuclear polyhedrosis virus p10 gene indicates that the polypeptide contains a coiled-coil domain. J Gen Virol 76:2923–2932

    Article  PubMed  CAS  Google Scholar 

  48. Horton H, Burand J (1993) Saturable attachment sites for polyhedron-derived baculovirus on insect cells and evidence for entry via direct membrane fusion. J Virol 67:1860–1868

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Ohkawa T, Washburn J, Sitapara R et al (2005) Specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to midgut cells of Heliothis virescens larvae is mediated by products of pif genes Ac119 and Ac022 but not by Ac115. J Virol 79:15258–15264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Flipsen J, Martens J, van Oers M et al (1995) Passage of Autographa californica nuclear polyhedrosis virus through the midgut epithelium of Spodoptera exigua larvae. Virology 208:328–335

    Article  PubMed  CAS  Google Scholar 

  51. Washburn J, Chan E, Volkman L et al (2003) Early synthesis of budded virus envelope fusion protein GP64 enhances Autographa californica multicapsid nucleopolyhedrovirus virulence in orally infected Heliothis virescens. J Virol 77:280–290

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Englehard E, Kam-Morgan L, Washburn J et al (1994) The insect tracheal system: a conduit for the systemic spread of Autographa californica nuclear polyhedrosis virus. Proc Natl Acad Sci U S A 91:3224–3227

    Article  Google Scholar 

  53. Wu W, Passarelli A (2010) Autographa californica Multiple nucleopolyhedrovirus Ac92 (ORF92, P33) is required for budded virus production and multiply enveloped occlusion-derived virus formation. J Virol 84:12351–12361

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Wu W, Passarelli A (2012) The Autographa californica M nucleopolyhedrovirus ac79 gene encodes an early gene product with structural similarities to UvrcC and intron-encoded endonucleases that is required for efficient budded virus production. J Virol 86:5614–5625

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Granados R, Lawler L (1981) In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 108:297–308

    Article  PubMed  CAS  Google Scholar 

  56. Fraser M (1986) Ultrastructural observations of virion maturation in Autographa californica nuclear polyhedrosis virus infected Spodoptera frugiperda cell cultures. J Ultrastruct Mol Struct Res 95:189–195

    Article  Google Scholar 

  57. Lung O, Westenberg M, Vlak J et al (2002) Pseudotyping Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV): F proteins from Group II NPVs are functionally analogous to AcMNPV GP64. J Virol 76:5729–5736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Monsma S, Oomens A, Blissard G (1996) The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J Virol 70:4607–4616

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Ohkawa T, Majima K, Maeda S (1994) A cysteine proteinase encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus. J Virol 68:6619–6625

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Slack J, Kuzio J, Faulkner P (1995) Characterization of v-cath, a cathepsin L-like proteinase expressed by the baculovirus Autographa californica multiple nuclear polyhedrosis virus. J Gen Virol 76:1091–1098

    Article  PubMed  CAS  Google Scholar 

  61. Hawtin R, Zarkowska T, Arnold K et al (1997) Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin gene. Virology 238:243–254

    Article  PubMed  CAS  Google Scholar 

  62. Katsuma S, Noguchi Y, Zhou C et al (1999) Characterization of the 25K FP gene of the baculovirus Bombyx mori nucleopolyhedrovirus: implications for post-mortem host degradation. J Gen Virol 80:783–791

    Article  PubMed  CAS  Google Scholar 

  63. Suzuki T, Kanaya T, Okazaki H et al (1997) Efficient protein production using a Bombyx mori nuclear polyhedrosis virus lacking the cysteine proteinase gene. J Gen Virol 78:3073–3080

    Article  PubMed  CAS  Google Scholar 

  64. Bonning B, Hammock B (1986) Development of recombinant baculoviruses for insect control. Annu Rev Entomol 41:191–210

    Article  Google Scholar 

  65. Kamita S, Nagasaka K, Chua J et al (2005) A baculovirus-encoded protein tyrosine phosphatase gene induced enhanced locomotory activity in a lepidopteran host. Proc Natl Acad Sci U S A 102:2584–2589

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Hoover K, Grove M, Gardner M et al (2011) A gene for an extended phenotype. Science 333:1401

    Article  PubMed  CAS  Google Scholar 

  67. Ayres M, Howard S, Kuzio J et al (1994) The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202:586–605

    Article  PubMed  CAS  Google Scholar 

  68. Kool M, Vlak J (1993) The structural and functional organization of the Autographa californica nuclear polyhedrosis virus genome. Arch Virol 130:1–16

    Article  PubMed  CAS  Google Scholar 

  69. Jun-Chuan Q, Waever R (1982) Capping of viral RNA in cultured Spodoptera frugiperda cells infected with Autographa californica nuclear polyhedrosis virus. J Virol 43:234–240

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Westwood J, Jones I, Bishop D (1993) Analysis of poly(A) signals for use in baculovirus expression vectors. Virology 195:190–199

    Article  Google Scholar 

  71. Chisholm G, Henner D (1988) Multiple early transcripts and splicing of the Autographa californica nuclear polyhedrosis virus IE-1 gene. J Virol 62:3193–3200

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Lubbert H, Doerfler W (1984) Transcription of overlapping sets of RNAs from the genome of Autographa californica nuclear polyhedrosis virus: a novel method for mapping RNAs. J Virol 52:255–265

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Friesen P, Miller L (1985) Temporal regulation of baculovirus RNA: overlapping early and late transcripts. J Virol 54:392–400

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Rankin C, Ladin B, Weaver R (1986) Physical mapping of temporally regulated, overlapping transcripts in the region of the 10K protein gene in Autographa californica nuclear polyhedrosis virus. J Virol 57:18–27

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Friesen P, Miller L (1987) Divergent transcription of early 35- and 94-kilodalton protein genes encoded by the HindIII K genome fragment of the baculovirus Autographa californica nuclear polyhedrosis virus. J Virol 61:2264–2272

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Grula M, Buller P, Weave R (1981) α-amanitin-resistant viral RNA synthesis in nuclei isolated from nuclear polyhedrosis virus-infected Heliothis zea larvae and Spodoptera frugiperda cells. J Virol 38:916–921

    PubMed  CAS  PubMed Central  Google Scholar 

  77. O’Reilly D, Passarelli A, Goldman I et al (1990) Characterization of the DA26 gene in a hypervariable region of the Autographa californica nuclear polyhedrosis virus genome. J Gen Virol 71:1029–1037

    Article  PubMed  Google Scholar 

  78. Dickson J, Friesen P (1991) Identification of upstream promoter elements mediating early transcription from the 35,000-molecular-weight protein gene of Autographa californica nuclear polyhedrosis virus. J Virol 65:4006–4016

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Guarino L, Smith M (1992) Regulation of delayed-early gene transcription by dual TATA boxes. J Virol 66:3733–3739

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Carson D, Summers M, Guarino L (1991) Transient expression of the Autographa californica nuclear polyhedrosis virus immediate-early gene, IE-N, is regulated by three viral elements. J Virol 65:945–951

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Pullen S, Friesen P (1995) Early transcription of the ie-1 transregulator gene of Autographa californica nuclear polyhedrosis virus is regulated by DNA sequences within it's 5' noncoding leader region. J Virol 69:156–165

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Pullen S, Friesen P (1995) The CAGT motif functions as an initiator element during early transcription of the baculovirus transregulator ie-1. J Virol 69:3575–3583

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Friesen P (1997) Regulation of baculovirus early gene expression. In: Miller LK (ed) The baculoviruses. Plenum press, New York, pp 141–191

    Chapter  Google Scholar 

  84. Tomalski M, Wu J, Miller L (1988) The location, sequence, transcription, and regulation of a baculovirus DNA polymerase gene. Virology 167:591–600

    Article  PubMed  CAS  Google Scholar 

  85. Lu A, Carstens E (1993) Immediate-early baculovirus genes transactivate the p143 gene promoter of Autographa californica nuclear polyhedrosis virus. Virology 195:710–718

    Article  PubMed  CAS  Google Scholar 

  86. Kogan P, Blissard G (1994) A baculovirus gp64 early promoter is activated by host transcription factor binding to CACGTG and GATA elements. J Virol 68:813–822

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Nissen M, Friesen P (1989) Molecular analysis of the transcriptional regulatory region of an early baculovirus gene. J Virol 63:493–503

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Guarino L, Dong W, Xu B et al (1992) Baculovirus phosphoprotein pp 32 is associated with virogenic stroma. J Virol 66:7113–7120

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Krappa R, Behn-Krappa A, Jahnel F et al (1992) Differential factor binding at the promoter of early baculovirus gene PE38 during viral infection: GATA motif is recognised by an insect protein. J Virol 66:3494–3503

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Cochran M, Faulkner P (1983) Location of homolgous DNA sequences interspersed at five regions in the baculovirus Autographa californica nuclear polyhedrosis virus genome. J Virol 45:961–970

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Guarino L, Summers M (1986) Interspersed homologous DNA of Autographa californica nuclear polyhedrosis virus enhances delayed-early gene expression. J Virol 60:215–223

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Guarino L, Summers M (1986) Functional mapping of a trans-activating gene required for expression of a baculovirus delayed-early gene. J Virol 57:563–571

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Rodems S, Friesen P (1993) The hr5 transcriptional enhancer stimulates early expression from the Autographa californica nuclear polyhedrosis virus genome but is not required for virus replication. J Virol 67:5776–5785

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Leisy D, Rasmussen C, Kim H et al (1995) The Autographa californica nuclear polyhedrosis virus homologous region 1a: identical sequences are essential for DNA replication activity and transcriptional enhancer function. Virology 208:742–752

    Article  PubMed  CAS  Google Scholar 

  95. Rodems S, Pullen S, Friesen P (1997) DNA-dependent transregulation by IE1 of Autographa californica nuclear polyhedrosis virus: IE1 domains required for transactivation and DNA binding. J Virol 71:9270–9277

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Leisy D, Rohrmann G (2000) The Autographa californica nucleopolyhedrovirus IE-1 protein complex has two modes of specific DNA binding. Virology 274:196–202

    Article  PubMed  CAS  Google Scholar 

  97. Olson V, Wetter J, Friesen P (2002) Baculovirus transregulator IE1 requires a dimeric nuclear localization element for nuclear import and promoter activation. J Virol 76:9505–9515

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Gong M, Guarino L (1994) Expression of the 39k promoter of Autographa californica nuclear polyhedrosis virus is increased by the apoptotic suppressor P35. Virology 204:38–44

    Article  PubMed  CAS  Google Scholar 

  99. Kovacs G, Guarino L, Summers M (1991) Novel regulatory properties of the IE1 and IE0 transactivators encoded by the baculovirus Autographa californica multicapsid nuclear polyhedrosis virus. J Virol 65:5281–5288

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Stewart T, Huijskens I, Willis L et al (2005) The Autographa californica multiple nucleopolyhedrovirus ie0-ie1 gene complex is essential for wild-type virus replication, but either IE0 or IE1 can support virus growth. J Virol 79:4619–4629

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. Carson D, Guarino L, Summers M (1988) Functional mapping of an AcNPV immediate early gene which augments expression of the IE-1 trans-activated 39K gene. Virology 162:444–451

    Article  PubMed  CAS  Google Scholar 

  102. Carson D, Summers M, Guarino L (1991) Molecular analysis of a baculovirus regulatory gene. Virology 182:279–286

    Article  PubMed  CAS  Google Scholar 

  103. Gong M, Jin J, Guarino L (1998) Mapping of ORF121, a factor that activates baculovirus early gene expression. Virology 244:495–503

    Article  PubMed  CAS  Google Scholar 

  104. Murges D, Kremer A, Knebel-Mörsdorf D (1997) Baculovirus transactivator IE1 is functional in mammalian cells. J Gen Virol 78:1507–1510

    Article  PubMed  CAS  Google Scholar 

  105. Clem R, Fechheimer M, Miller L (1991) Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254:1388–1390

    Article  PubMed  CAS  Google Scholar 

  106. Miller L, Kaiser W, Seshagiri S (1998) Baculovirus regulation of apoptosis. Sem Virol 8:445–452

    Article  CAS  Google Scholar 

  107. Ahmad M, Srinivasula S, Wang L et al (1997) Spodoptera frugiperda Caspase-1, a novel insect death protease that cleaves the nuclear immunophilin FKBP46, is the target of the baculovirus anti-apototic protein p35. J Biol Chem 272:1421–1424

    Article  PubMed  CAS  Google Scholar 

  108. Prikhod'ko E, Miller L (1996) Induction of apoptosis by baculovirus transactivator IE1. J Virol 70:7116–7124

    PubMed  PubMed Central  Google Scholar 

  109. Prikhod'ko E, Miller L (1999) The baculovirus PE38 protein augments apoptosis induced by transactivator IE1. J Virol 73:6691–6699

    PubMed  PubMed Central  Google Scholar 

  110. LaCount D, Friesen P (1997) Role of early and late replication events in induction of apoptosis by baculoviruses. J Virol 71:1530–1537

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Schultz K, Friesen P (2009) Baculovirus DNA replication-specific expression factors trigger apoptosis and shutoff of host protein synthesis during infection. J Virol 83:11123–11132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  112. Maguire T, Harrison P, Hyink O et al (2000) The inhibitors of apoptosis of Epiphyas postvittana nucleopolyhedrovirus. J Gen Virol 81:2803–2811

    Article  PubMed  CAS  Google Scholar 

  113. Miller D, Luque T, Crook N et al (2002) Expression of the Cydia pomonella granulovirus iap3 gene. Arch Virol 147:1221–1236

    Article  PubMed  CAS  Google Scholar 

  114. Clem R (2007) Baculoviruses and apoptosis: a diversity of genes and responses. Curr Drug Targets 8:1069–1074

    Article  PubMed  CAS  Google Scholar 

  115. Huang Y, Park Y, Rich R et al (2001) Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104:781–790

    PubMed  CAS  Google Scholar 

  116. Seshagiri S, Miller L (1997) Baculovirus inhibitors of apoptosis (IAPs) block activation of Sf-caspase-1. Proc Natl Acad Sci U S A 94:13606–13611

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  117. Kool M, Voeten J, Goldbach R et al (1993) Identification of seven putative origins of Autographa californica multiple nucleocapsid nuclear polyhedrosis virus DNA replication. J Gen Virol 74:2661–2668

    Article  PubMed  CAS  Google Scholar 

  118. Pearson M, Bjornson R, Pearson G et al (1992) The Autographa californica baculovirus genome: evidence for multiple replication origins. Science 257:1382–1384

    Article  PubMed  CAS  Google Scholar 

  119. McDougal V, Guarino L (1999) Autographa californica nuclear polyhedrosis virus DNA polymerase: measurements of processivity and strand displacement. J Virol 73:4908–4918

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Mikhailov V, Rohrmann G (2002) Baculovirus replication factor LEF-1 is a DNA primase. J Virol 76:2287–2297

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  121. Ahrens C, Carlson C, Rohrmann G (1995) Identification, sequence and transcriptional analysis of lef-3, a gene essential for Orgyia pseudotsugata baculovirus DNA replication. Virology 210:372–382

    Article  PubMed  CAS  Google Scholar 

  122. Mikhailov V (2000) Helix-destabilizing properties of the baculovirus single-stranded DNA-binding protein (LEF-3). Virology 270:180–189

    Article  PubMed  CAS  Google Scholar 

  123. Kool M, Ahrens C, Goldbach R et al (1994) Identification of genes involved in DNA replication of the Autographa californica baculovirus. Proc Natl Acad Sci U S A 91:11212–11216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  124. Lin G, Blissard G (2002) Analysis of an Autographa californica nucleopolyhedrovirus lef-11 knockout: LEF-11 is essential for viral DNA replication. J Virol 76:2770–2779

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  125. Bideshi D, Federici B (2000) DNA-independent ATPase activity of the Trichoplusia ni granulovirus DNA helicase. J Gen Virol 81:1601–1604

    Article  PubMed  CAS  Google Scholar 

  126. Vanarsdall A, Okano K, Rohrmann G (2005) Characterization of the replication of a baculovirus mutant lacking the DNA polymerase gene. Virology 331:175–180

    Article  PubMed  CAS  Google Scholar 

  127. Wu C, Huang Y, Wang J et al (2010) Autographa californica multiple nucleopolyhedrovirus LEF-2 is a capsid protein required for amplification but not initiation of viral DNA replication. J Virol 84:5015–5024

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  128. Lu A, Miller L (1995) The roles of eighteen baculovirus late expression factor genes in transcription and DNA replication. J Virol 69:975–982

    PubMed  CAS  PubMed Central  Google Scholar 

  129. Yoo S, Guarino L (1994) The Autographa californica nuclear polyhedrosis virus ie2 gene encodes a transcriptional regulator. Virology 202:746–753

    Article  PubMed  CAS  Google Scholar 

  130. Mainz D, Quadt I, Knebel-Mörsdorf D (2002) Nuclear IE2 structures are related to viral DNA replication sites during baculovirus infection. J Virol 76:5198–5207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  131. Wu Y, Carstens E (1998) A baculovirus single-stranded DNA binding protein, LEF-3, mediates the nuclear localisation of the putative helicase P143. Virology 247:32–40

    Article  PubMed  CAS  Google Scholar 

  132. Evans J, Rosenblatt G, Leisy D et al (1999) Characterization of the interaction between the baculovirus ssDNA-binding protein (LEF-3) and putative helicase (P143). J Gen Virol 80:493–500

    Article  PubMed  CAS  Google Scholar 

  133. Evans J, Leisy D, Rohrmann G (1997) Characterization of the interaction between the baculovirus replication factors LEF-1 and LEF-2. J Virol 71:3114–3119

    PubMed  CAS  PubMed Central  Google Scholar 

  134. Hefferon K, Miller L (2002) Reconstructing the replication complex of AcMNPV. Eur J Biochem 269:6233–6240

    Article  PubMed  CAS  Google Scholar 

  135. Ito E, Sahri D, Knippers R et al (2004) Baculovirus proteins IE-1, LEF-3, and P143 interact with DNA in vivo: a formaldehyde cross-linking study. Virology 329:337–347

    Article  PubMed  CAS  Google Scholar 

  136. Vanarsdall A, Okano K, Rohrmann G (2004) Characterization of a baculovirus with a deletion of vlf-1. Virology 326:191–201

    Article  PubMed  CAS  Google Scholar 

  137. Rosinski M, Reid S, Nielsen L (2002) Kinetics of baculovirus replication and release using real-time quantitative polymerase chain reaction. Biotechnol Bioeng 77:476–480

    Article  PubMed  CAS  Google Scholar 

  138. Guarino L, Xu B, Jin J et al (1998) A virus-encoded RNA polymerase purified from baculovirus-infected cells. J Virol 72:7985–7991

    PubMed  CAS  PubMed Central  Google Scholar 

  139. Fuchs L, Woods M, Weaver R (1983) Viral transcription during Autographa californica nuclear polyhedrosis virus infection: a novel RNA polymerase induced in infected Spodoptera frugiperda cells. J Virol 48:641–646

    PubMed  CAS  PubMed Central  Google Scholar 

  140. Guarino L, Jin J, Dong W (1998) Guanylyltransferase activity of the LEF-4 subunit of baculovirus RNA polymerase. J Virol 72:10003–10010

    PubMed  CAS  PubMed Central  Google Scholar 

  141. Gross C, Shuman S (1998) RNA 5'-triphosphatase, nucleoside triphosphatase, and guanylyltransferase activities of baculovirus LEF-4 protein. J Virol 72:10020–10028

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Passarelli A, Todd J, Miller L (1994) A baculovirus gene involved in late gene expression predicts a large polypeptide with a conserved motif of RNA polymerases. J Virol 68:4673–4678

    PubMed  CAS  PubMed Central  Google Scholar 

  143. Todd J, Passarelli A, Miller L (1995) Eighteen baculovirus genes, including lef-11, p35, 39K, and p47, support late gene expression. J Virol 69:968–974

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Carstens E, Chan H, Yu H et al (1994) Genetic analyses of temperature-sensitive mutations in baculovirus late expression factors. Virology 204:323–337

    Article  PubMed  CAS  Google Scholar 

  145. Crouch E, Cox L, Morales K et al (2007) Inter-subunit interactions of the Autographa californica M nucleopolyhedrovirus RNA polymerase. Virology 367:265–274

    Article  PubMed  CAS  Google Scholar 

  146. Jin J, Dong W, Guarino L (1998) The LEF-4 subunit of baculovirus RNA polymerase has RNA 5'-triphosphate and ATPase activities. J Virol 72:10011–10019

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Lu A, Miller L (1994) Identification of three late expression factor genes within the 33.8- to 43.3-map-unit region of Autographa californica nuclear polyhedrosis virus. J Virol 68:6710–6716

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Titterington J, Nun T, Passarelli A (2003) Functional dissection of the baculovirus late expression factor-8 gene: sequence requirements for late gene promoter expression. J Gen Virol 84:1817–1826

    Article  PubMed  CAS  Google Scholar 

  149. Burma S, Mukherjee B, Jain A et al (1994) An unusual 30-kDa protein binding to the polyhedrin gene promoter of Autographa californica nuclear polyhedrosis virus. J Biol Chem 269:2750–2757

    PubMed  CAS  Google Scholar 

  150. Ghosh S, Jain A, Mukherjee B et al (1998) The host factor polyhedrin promoter binding protein (PPBP) is in involved in transcription from the baculovirus gene promoter. J Virol 72:7484–7493

    PubMed  CAS  PubMed Central  Google Scholar 

  151. Rankin C, Ooi B, Miller L (1988) Eight base pairs encompassing the transcriptional start point are the major determinant for baculovirus polyhedrin gene expression. Gene 70:39–49

    Article  PubMed  CAS  Google Scholar 

  152. Garrity D, Chang M, Blissard G (1997) Late promoter selection in the baculovirus gp64 envelope fusion protein gene. Virology 231:167–181

    Article  PubMed  CAS  Google Scholar 

  153. Ooi B, Rankin C, Miller L (1989) Downstream sequences augment transcription from the essential initiation site of a baculovirus polyhedrin gene. J Mol Biol 210:721–736

    Article  PubMed  CAS  Google Scholar 

  154. Possee R, Howard S (1987) Analysis of the polyhedrin gene promoter of the Autographa californica nuclear polyhedrosis virus. Nucleic Acids Res 15:10233–10248

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  155. Weyer U, Possee R (1988) Functional analysis of the p10 gene 5' leader sequence of the Autographa californica nuclear polyhedrosis virus. Nucleic Acids Res 16:3635–3654

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  156. Mans R, Knebel-Mörsdorf D (1998) In vitro transcription of pe38/polyhedrin hybrid promoters reveals sequences essential for recognition by the baculovirus-induced RNA polymerase and for the strength of very late viral promoters. J Virol 72:2991–2998

    PubMed  CAS  PubMed Central  Google Scholar 

  157. Weyer U, Possee R (1989) Analysis of the Autographa californica nuclear polyhedrosis virus p10 gene. J Gen Virol 70:203–208

    Article  PubMed  CAS  Google Scholar 

  158. Roelvink P, van Meer M, de Kort C et al (1992) Dissimilar expression of Autographa californica multiple nucleocapsid nuclear polyhedrosis virus polyhedrin and p10 genes. J Gen Virol 73:1481–1489

    Article  PubMed  CAS  Google Scholar 

  159. Todd J, Passarelli A, Lu A et al (1996) Factors regulating baculovirus late and very late gene expression in transient expression assays. J Virol 70:2307–2317

    PubMed  CAS  PubMed Central  Google Scholar 

  160. Rapp J, Wilson J, Miller L (1998) Nineteen baculovirus open reading frames, including LEF-12, support late gene expression. J Virol 72:10197–10206

    PubMed  CAS  PubMed Central  Google Scholar 

  161. Li L, Harwood S, Rohrmann G (1999) Identification of additional genes that influence baculovirus late gene expression. Virology 255:9–19

    Article  PubMed  CAS  Google Scholar 

  162. Choi J, Guarino L (1995) A temperature-sensitive IE1 protein of Autographa californica nuclear polyhedrosis virus has altered transactivation and DNA binding activities. Virology 209:90–98

    Article  PubMed  CAS  Google Scholar 

  163. Guarino L, Mistretta T, Dong W (2002) Baculovirus lef-12 is not required for viral replication. J Virol 76:12032–12043

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  164. Huijskens I, Li L, Willis L et al (2004) Role of AcMNPV IE0 in very late gene activation. Virology 323:120–130

    Article  PubMed  CAS  Google Scholar 

  165. Harrison R, Jarvis D, Summers M (1996) The role of the AcMNPV 25K gene, “FP25”, in baculovirus polh and p10 expression. Virology 226:34–46

    Article  PubMed  CAS  Google Scholar 

  166. McLachlin J, Miller L (1994) Identification and characterization of vlf-1, a baculovirus gene involved in very late gene expression. J Virol 68:7746–7756

    PubMed  CAS  PubMed Central  Google Scholar 

  167. Yang S, Miller L (1999) Activation of baculovirus very late promoters by interaction with very late factor 1. J Virol 73:3404–3409

    PubMed  CAS  PubMed Central  Google Scholar 

  168. Yang S, Miller L (1998) Expression and mutational analysis of the baculovirus very late factor 1 (vlf-1) Gene. Virology 245:99–109

    Article  PubMed  CAS  Google Scholar 

  169. Yang S, Miller L (1998) Control of baculovirus polyhedrin gene expression by very late factor 1. Virology 248:131–138

    Article  PubMed  CAS  Google Scholar 

  170. Mistretta T, Guarino L (2005) Transcriptional activity of baculovirus very late factor 1. J Virol 79:1958–1960

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  171. Hink F, Vail P (1973) A plaque assay for titration of Alfalfa Looper nuclear polyhedrosis virus in Cabbage Looper (TN-368) cell line. J Invertebr Pathol 22:168–174

    Article  Google Scholar 

  172. Ramoska W, Hink W (1974) Electron microscope examination of two plaque variants from a nuclear polyherosis virus of the Alfalfa Looper, Autographa californica. J Invertebr Pathol 23:197–201

    Article  PubMed  CAS  Google Scholar 

  173. Potter K, Faulkner P, Mackinnon E (1976) Strain selection during serial passage of Trichoplusia ni nuclear polyhedrosis virus. J Virol 18:1040–1050

    PubMed  CAS  PubMed Central  Google Scholar 

  174. Wood H (1980) Isolation and replication of an occlusion body-deficient mutant of the Autographa californica nuclear polyhedrosis virus. Virology 105:338–344

    Article  PubMed  CAS  Google Scholar 

  175. Beames B, Summers M (1988) Comparison of host cell DNA insertions and altered transcription at the site of insertions in few polyhedra baculovirus mutants. Virology 162:206–220

    Article  PubMed  CAS  Google Scholar 

  176. Beames B, Summers M (1989) Location and nucleotide sequence of the 25K Protein missing from baculovirus few polyhedra (FP) mutants. Virology 168:344–353

    Article  PubMed  CAS  Google Scholar 

  177. Harrison R, Summers M (1995) Mutations in the Autographa californica multinucleocapsid nuclear polyhedrosis virus 25kDa protein gene result in reduced virion occlusion, altered intranuclear envelopment and enhanced virus production. J Gen Virol 76:1451–1459

    Article  PubMed  CAS  Google Scholar 

  178. Braunagel S, Burks J, Rosas-Acosta G et al (1999) Mutations within the Autographa californica nucleopolyhedrovirus FP25K gene decrease the accumulation of ODV-E66 and alter its intranuclear transport. J Virol 73:8559–8570

    PubMed  CAS  PubMed Central  Google Scholar 

  179. Harrison R, Summers M (1995) Biosynthesis and localization of the Autographa californica nuclear polyhedrosis virus 25K gene product. Virology 208:279–288

    Article  PubMed  CAS  Google Scholar 

  180. Jarvis D, Bohlmeyer D, Garcia A Jr (1991) Requirements for nuclear localization and supramolecular assembly of a baculovirus polyhedrin protein. Virology 185:795–810

    Article  PubMed  CAS  Google Scholar 

  181. Smith G, Summers M, Fraser M (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3:2156–2165

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  182. Maeda S, Kawai T, Obinata M et al (1985) Production of human alpha-interferon in silkworm using a baculovirus vector. Nature 315:592–594

    Article  PubMed  CAS  Google Scholar 

  183. Emery V, Bishop D (1987) The development of multiple expression vectors for high level synthesis of eukaryotic proteins: expression of LCMV-N and AcMNPV polyhedrin protein by a recombinant baculovirus. Protein Eng 1:359–366

    Article  PubMed  CAS  Google Scholar 

  184. Belyaev A, Hails R, Roy P (1995) High-level expression of five foreign genes by a single recombinant baculovirus. Gene 156:229–233

    Article  PubMed  CAS  Google Scholar 

  185. Weyer U, Possee R (1991) A baculovirus dual expression vector derived from the Autographa californica nuclear polyhedrosis virus polyhedrin and p10 promoters: co-expression of two influenza virus genes in insect cells. J Gen Virol 72:2967–2971

    Article  PubMed  CAS  Google Scholar 

  186. French T, Marshall J, Roy P (1990) Assembly of double-shelled, virus-like particles of bluetongue by the simultaneous expression of four structural proteins. J Virol 64:5695–5700

    PubMed  CAS  PubMed Central  Google Scholar 

  187. Boyce F, Bucher N (1996) Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci U S A 93:2348–2352

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Alex Patmanidi for providing electron micrographs of baculovirus occlusion bodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Possee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kelly, B.J., King, L.A., Possee, R.D. (2016). Introduction to Baculovirus Molecular Biology. In: Murhammer, D. (eds) Baculovirus and Insect Cell Expression Protocols. Methods in Molecular Biology, vol 1350. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3043-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3043-2_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3042-5

  • Online ISBN: 978-1-4939-3043-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics