Skip to main content

Engineered mtZFNs for Manipulation of Human Mitochondrial DNA Heteroplasmy

  • Protocol
Mitochondrial DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1351))

Abstract

Enrichment of desired mitochondrial DNA (mtDNA) haplotypes, in both experimental systems and the clinic, is an end sought by many. Through use of a designer nuclease platform optimized for delivery to mitochondria—the mitochondrially targeted zinc finger-nuclease (mtZFN)—it is possible to discriminate between mtDNA haplotypes with specificity to the order of a single nucleotide substitution. Site-specific cleavage of DNA produces a shift in the heteroplasmic ratio in favor of the untargeted haplotype. Here, we describe protocols for assembly of paired, conventional tail–tail mtZFN constructs and experimental approaches to assess mtZFN activity in mammalian cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parsons TJ, Muniec DS, Sullivan K, Woodyatt N, Alliston-Greiner R, Wilson MR, Berry DL, Holland KA, Weedn VW, Gill P, Holland MM (1997) A high observed substitution rate in the human mitochondrial DNA control region. Nat Genet 15:363–368

    Article  CAS  PubMed  Google Scholar 

  2. Schapira AH (2006) Mitochondrial disease. Lancet 368:70–82

    Article  CAS  PubMed  Google Scholar 

  3. Man PY, Turnbull DM, Chinnery PF (2002) Leber hereditary optic neuropathy. J Med Genet 39:162–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tanaka M, Borgeld HJ, Zhang J, Muramatsu S, Gong JS, Yoneda M, Maruyama W, Naoi M, Ibi T, Sahashi K, Shamoto M, Fuku N, Kurata M, Yamada Y, Nishizawa K, Akao Y, Ohishi N, Miyabayashi S, Umemoto H, Muramatsu T, Furukawa K, Kikuchi A, Nakano I, Ozawa K, Yagi K (2002) Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci 9:534–541

    CAS  PubMed  Google Scholar 

  5. Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT (2013) Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19:1111–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gammage PA, Rorbach J, Vincent AI, Rebar EJ, Minczuk M (2014) Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med 6:458–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim YG, Chandrasegaran S (1994) Chimeric restriction endonuclease. Proc Natl Acad Sci U S A 91:883–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A (2006) Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proc Natl Acad Sci U S A 103:19689–19694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A (2008) Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 36:3926–3938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Minczuk M, Kolasinska-Zwierz P, Murphy MP, Papworth MA (2010) Construction and testing of engineered zinc-finger proteins for sequence-specific modification of mtDNA. Nat Protoc 5:342–356

    Article  CAS  PubMed  Google Scholar 

  14. Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8:74–79

    Article  CAS  PubMed  Google Scholar 

  15. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    Article  CAS  PubMed  Google Scholar 

  16. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793

    Article  CAS  PubMed  Google Scholar 

  17. Carroll D, Morton JJ, Beumer KJ, Segal DJ (2006) Design, construction and in vitro testing of zinc finger nucleases. Nat Protoc 1:1329–1341

    Article  CAS  PubMed  Google Scholar 

  18. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Muller-Lerch F, Fu F, Pearlberg J, Gobel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim S, Lee MJ, Kim H, Kang M, Kim JS (2011) Preassembled zinc-finger arrays for rapid construction of ZFNs. Nat Methods 8:7

    Article  CAS  PubMed  Google Scholar 

  20. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:67–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. King MP, Attadi G (1996) Mitochondria-mediated transformation of human rho(0) cells. Methods Enzymol 264:313–334

    Article  CAS  PubMed  Google Scholar 

  22. Manfredi G, Gupta N, Vazquez-Memije ME, Sadlock JE, Spinazzola A, De Vivo DC, Schon EA (1999) Oligomycin induces a decrease in the cellular content of a pathogenic mutation in the human mitochondrial ATPase 6 gene. J Biol Chem 274:9386–9391

    Article  CAS  PubMed  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  24. Minczuk M (2010) Engineered zinc finger proteins for manipulation of the human mitochondrial genome. Methods Mol Biol 649:257–270

    Article  CAS  PubMed  Google Scholar 

  25. Bayona-Bafaluy MP, Blits B, Battersby BJ, Shoubridge EA, Moraes CT (2005) Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc Natl Acad Sci U S A 102:14392–14397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Payam A. Gammage or Michal Minczuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gammage, P.A., Van Haute, L., Minczuk, M. (2016). Engineered mtZFNs for Manipulation of Human Mitochondrial DNA Heteroplasmy. In: McKenzie, M. (eds) Mitochondrial DNA. Methods in Molecular Biology, vol 1351. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3040-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3040-1_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3039-5

  • Online ISBN: 978-1-4939-3040-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics