Skip to main content

Chemoselective Strategies to Peptide and Protein Bioprobes Immobilization on Microarray Surfaces

  • Protocol
Peptide Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1352))

Abstract

Ordered and reproducible bioprobe immobilization onto sensor surfaces is a critical step in the development of reliable analytical devices. A growing awareness of the impact of the immobilization scheme on the consistency of the generated data is driving the demand for chemoselective approaches to immobilize biofunctional ligands, such as peptides, in a predetermined and uniform fashion. Herein, the most intriguing strategies to selective and oriented peptide immobilization are described and discussed. The aim of the current work is to provide the reader a general picture on recent advances made in this field, highlighting the potential associated with each chemoselective strategy. Case studies are described to provide illustrative examples, and cross-references to more topic-focused and exhaustive reviews are proposed throughout the text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butte A (2002) The use and analysis of microarray data. Nat Rev Drug Discov 1:951–960

    Article  CAS  PubMed  Google Scholar 

  2. Hoheisel JD (2006) Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet 7:200–210

    Article  CAS  PubMed  Google Scholar 

  3. Cretich M, Damin F, Pirri G, Chiari M (2006) Protein and peptide arrays: recent trends and new directions. Biomol Eng 23:77–88

    Article  CAS  PubMed  Google Scholar 

  4. Kim D, Herr AE (2013) Protein immobilization techniques for microfluidic assays. Biomicrofluidics 7:1–47

    Article  Google Scholar 

  5. Heise C, Bier FF (2005) Immobilization of DNA on microarrays. Top Curr Chem 261:1–25

    CAS  Google Scholar 

  6. Nimse SB, Song K, Sonawane MD, Sayyed DR, Kim T (2014) Immobilization techniques for microarray: challenges and applications. Sensors 14:22208–22229

    Article  PubMed  PubMed Central  Google Scholar 

  7. Helms B, Van Baal I, Merkx M, Meijer EW (2007) Site-specific protein and peptide immobilization on a biosensor surface by pulsed native chemical ligation. Chembiochem 8:1790–1794

    Article  CAS  PubMed  Google Scholar 

  8. Köhn M (2009) Immobilization strategies for small molecule, peptide and protein microarrays. J Pept Sci 15:393–397

    Article  PubMed  Google Scholar 

  9. Foong YM, Fu J, Yao SQ, Uttamchandani M (2012) Current advances in peptide and small molecule microarray technologies. Curr Opin Chem Biol 16:234–242

    Article  CAS  PubMed  Google Scholar 

  10. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40:2004–2021

    Article  CAS  PubMed  Google Scholar 

  11. Tang W, Becker ML (2014) “Click” reactions: a versatile toolbox for the synthesis of peptide-conjugates. Chem Soc Rev 43:7013–7039

    Article  CAS  PubMed  Google Scholar 

  12. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl 41:2596–2599

    Article  CAS  PubMed  Google Scholar 

  13. Meldal M, Tornøe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108:2952–3015

    Article  CAS  PubMed  Google Scholar 

  14. Gori A, Wang C-IA, Harvey PJ, Rosengren KJ, Bhola RF, Gelmi ML, Longhi R, Christie MJ, Lewis RJ, Alewood PF, Brust A (2014) Stabilization of the cysteine-rich conotoxin MrIA by using a 1,2,3-triazole as a disulfide bond mimetic. Angew Chem Int Ed 54:1361–1364

    Article  Google Scholar 

  15. Lin PC, Ueng SH, Tseng MC, Ko JL, Huang KT, Yu SC, Adak AK, Chen YJ, Lin CC (2006) Site-specific protein modification through CuI-catalyzed 1,2,3-triazole formation and its implementation in protein microarray fabrication. Angew Chem Int Ed 45:4286–4290

    Article  CAS  Google Scholar 

  16. ZZilio C, Bernardi A, Palmioli A, Salina M, Tagliabue G, Buscaglia M, Consonni R, Chiari M (2015) New “clickable” polymeric coating for glycan microarrays. Sensor Actuator B: Chemical 215:412–420

    Google Scholar 

  17. Lind JU, Acikgöz C, Daugaard AE, Andresen TL, Hvilsted S, Textor M, Larsen NB (2012) Micropatterning of functional conductive polymers with multiple surface chemistries in register. Langmuir 28:6502–6511

    Article  CAS  PubMed  Google Scholar 

  18. Koepsel JT, Murphy WL (2009) Patterning discrete stem cell culture environments via localized self-assembled monolayer replacement. Langmuir 25:12825–12834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hansen TS, Lind JU, Daugaard AE, Hvilsted S, Andresen TL, Larsen NB (2010) Complex surface concentration gradients by stenciled “electro click chemistry”. Langmuir 26:16171–16177

    Article  CAS  PubMed  Google Scholar 

  20. Gallant ND, Lavery KA, Amis EJ, Becker ML (2007) Universal gradient substrates for “click” biofunctionalization. Adv Mater 19:965–969

    Article  CAS  Google Scholar 

  21. Uttamapinant C, Tangpeerachaikul A, Grecian S, Clarke S, Singh U, Slade P, Gee KR, Ting AY (2012) Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew Chem Int Ed Engl 51:5852–5856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jewett JC, Bertozzi CR (2010) Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev 39:1272–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Codelli JA, Baskin JM, Agard NJ, Bertozzi CR (2008) Second-generation difluorinated cyclooctynes for copper-free click chemistry. J Am Chem Soc 130:11486–11493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prim D, Rebeaud F, Cosandey V, Marti R, Passeraub P, Pfeifer ME (2013) ADIBO-based “click” chemistry for diagnostic peptide micro-array fabrication: Physicochemical and assay characteristics. Molecules 18:9833–9849

    Article  CAS  PubMed  Google Scholar 

  25. Krishnamurthy VR, Wilson JT, Cui W, Song X, Cummings RD, Chaikof EL (2011) Chemoselective immobilization of peptides on abiotic and cell surfaces at controlled Densities. Langmuir 26:7675–7678

    Article  Google Scholar 

  26. Van Berkel SS, Van Eldijk MB, Van Hest JCM (2011) Staudinger ligation as a method for bioconjugation. Angew Chemie Int Ed 50:8806–8827

    Article  Google Scholar 

  27. Kalia J, Abbott NL, Raines RT (2007) General method for site-specific protein immobilization by Staudinger ligation. Bioconjug Chem 18:1064–1069

    Article  CAS  PubMed  Google Scholar 

  28. Lin P-C, Weinrich D, Waldmann H (2010) Protein biochips: oriented surface immobilization of proteins. Macromol Chem Phys 211:136–144

    Article  CAS  Google Scholar 

  29. Köhn M, Gutierrez-Rodriguez M, Jonkheijm P, Wetzel S, Wacker R, Schroeder H, Prinz H, Niemeyer CM, Breinbauer R, Szedlacsek SE, Waldmann H (2007) A microarray strategy for mapping the substrate specificity of protein tyrosine phosphatase. Angew Chem Int Ed 46:7700–7703

    Article  Google Scholar 

  30. Watzke A, Gutierrez-Rodriguez M, Köhn M, Wacker R, Schroeder H, Breinbauer R, Kuhlmann J, Alexandrov K, Niemeyer CM, Goody RS, Waldmann H (2006) A generic building block for C- and N-terminal protein-labeling and protein-immobilization. Bioorg Med Chem 14:6288–6306

    Article  CAS  PubMed  Google Scholar 

  31. Watzke A, Köhn M, Gutierrez-Rodriguez M, Wacker R, Schröder H, Breinbauer R, Kuhlmann J, Alexandrov K, Niemeyer CM, Goody RS, Waldmann H (2006) Site-selective protein immobilization by Staudinger ligation. Angew Chem Int Ed 45:1408–1412

    Article  CAS  Google Scholar 

  32. Nilsson BL, Hondal RJ, Soellner MB, Raines RT (2003) Protein assembly by orthogonal chemical ligation methods. J Am Chem Soc 125:5268–5269

    Article  CAS  PubMed  Google Scholar 

  33. Mather BD, Viswanathan K, Miller KM, Long TE (2006) Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci 31:487–531

    Article  CAS  Google Scholar 

  34. Nair DP, Podgórski M, Chatani S, Gong T, Xi W, Fenoli CR, Bowman CN (2014) The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater 26:724–744

    Article  CAS  Google Scholar 

  35. Li J, Hu XK, Lipson RH (2013) On-chip enrichment and analysis of peptide subsets using a maleimide-functionalized fluorous affinity biochip and nanostructure initiator mass spectrometry. Anal Chem 85:5499–5505

    Article  CAS  PubMed  Google Scholar 

  36. Gao G, Yu K, Kindrachuk J, Brooks DE, Hancock REW, Kizhakkedathu JN (2011) Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Biomacromolecules 12:3715–3727

    Article  CAS  PubMed  Google Scholar 

  37. Houseman BT, Gawalt ES, Mrksich M (2003) Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips. Langmuir 19:1522–1531

    Article  CAS  Google Scholar 

  38. Fu J, Reinhold J, Woodbury NW (2011) Peptide-modified surfaces for enzyme immobilization. PLoS One 6:2–7

    Google Scholar 

  39. Dondoni A (2008) The emergence of thiol-ene coupling as a click process for materials and bioorganic chemistry. Angew Chem Int Ed 47:8995–8997

    Article  CAS  Google Scholar 

  40. Jonkheijm P, Weinrich D, Köhn M, Engelkamp H, Christianen PCM, Kuhlmann J, Maan JC, Nüsse D, Schroeder H, Wacker R, Breinbauer R, Niemeyer CM, Waldmann H (2008) Photochemical surface patterning by the thiol-ene reaction. Angew Chem Int Ed 47:4421–4424

    Article  CAS  Google Scholar 

  41. Gupta N, Lin BF, Campos LM, Dimitriou MD, Hikita ST, Treat ND, Tirrell MV, Clegg DO, Kramer EJ, Hawker CJ (2010) A versatile approach to high-throughput microarrays using thiol-ene chemistry. Nat Chem 2:138–145

    Article  CAS  PubMed  Google Scholar 

  42. Ulrich S, Boturyn D, Marra A, Renaudet O, Dumy P (2014) Oxime ligation: a chemoselective click-type reaction for accessing multifunctional biomolecular constructs. Chem Eur J 20:34–41

    Article  CAS  PubMed  Google Scholar 

  43. Jiménez-Castells C, de la Torre BG, Gutiérrez Gallego R, Andreu D (2007) Optimized synthesis of aminooxy-peptides as glycoprobe precursors for surface-based sugar-protein interaction studies. Bioorg Med Chem Lett 17:5155–5158

    Article  PubMed  Google Scholar 

  44. Moulin A, Martinez J, Fehrentz J-A (2007) Synthesis of peptide aldehydes. J Pept Sci 13:1–15

    Article  CAS  PubMed  Google Scholar 

  45. Dendane N, Hoang A, Guillard L, Defrancq E, Vinet F, Dumy P (2007) Efficient surface patterning of oligonucleotides inside a glass capillary through oxime bond formation. Bioconjug Chem 18:671–676

    Article  CAS  PubMed  Google Scholar 

  46. Park S, Yousaf MN (2008) An interfacial oxime reaction to immobilize ligands and cells in patterns and gradients to photoactive surfaces. Langmuir 24:6201–6207

    Article  CAS  PubMed  Google Scholar 

  47. Pauloehrl T, Delaittre G, Bruns M, Meißler M, Börner HG, Bastmeyer M, Barner-Kowollik C (2012) (Bio)molecular surface patterning by phototriggered oxime ligation. Angew Chem Int Ed 51:9181–9184

    Article  CAS  Google Scholar 

  48. Kolodziej CM, Kim SH, Broyer RM, Saxer SS, Decker CG, Maynard HD (2012) Combination of integrin-binding peptide and growth factor promotes cell adhesion on electron-beam-fabricated patterns. J Am Chem Soc 134:247–255

    Article  CAS  PubMed  Google Scholar 

  49. Dawson PE, Kent SB (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960

    Article  CAS  PubMed  Google Scholar 

  50. Noisier AF, Albericio F (2014) Advances in ligation techniques for peptide and protein synthesis. Amino Acids Pept Protein 39:1–20

    Google Scholar 

  51. Lesaicherre ML, Uttamchandani M, Chen GYJ, Yao SQ (2002) Developing site-specific immobilization strategies of peptides in a microarray. Bioorg Med Chem Lett 12:2079–2083

    Article  CAS  PubMed  Google Scholar 

  52. Dendane N, Melnyk O, Xu T, Grandidier B, Boukherroub R, Stiévenard D, Coffinier Y (2012) Direct characterization of native chemical ligation of peptides on silicon nanowires. Langmuir 28:13336–13344

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Gori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gori, A., Longhi, R. (2016). Chemoselective Strategies to Peptide and Protein Bioprobes Immobilization on Microarray Surfaces. In: Cretich, M., Chiari, M. (eds) Peptide Microarrays. Methods in Molecular Biology, vol 1352. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3037-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3037-1_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3036-4

  • Online ISBN: 978-1-4939-3037-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics