Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18(9):383–388
CAS
CrossRef
PubMed
Google Scholar
Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 27(7):392–399
CAS
CrossRef
PubMed
Google Scholar
Marín O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483
CrossRef
PubMed
Google Scholar
Rakic P (2000) Molecular and cellular mechanisms of neuronal migration: relevance to cortical epilepsies. Adv Neurol 84:1–14
CAS
PubMed
Google Scholar
Weigmann A, Corbeil D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A 94(23):12425–12430
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Dubreuil V, Marzesco AM, Corbeil D, Huttner WB, Wilsch-Bräuninger M (2007) Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J Cell Biol 176(4):483–495
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Walsh C, Cepko CL (1993) Clonal dispersion in proliferative layers of developing cerebral cortex. Nature 362(6421):632–635
CAS
CrossRef
PubMed
Google Scholar
Molnár Z, Blakey D, Bystron I, Carney R (2006) Tract-tracing in developing systems and in post-mortem human material, Chapter 12. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract-tracing 3: molecules - neurons – systems. Springer, New York, NY, pp 336–393
Google Scholar
Kriegstein AR (2005) Constructing circuits: neurogenesis and migration in the developing neocortex. Epilepsia 46(Suppl 7):15–21
CAS
CrossRef
PubMed
Google Scholar
de Carlos JAJ, López-Mascaraque LL, Valverde FF (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 16:6146–6156
PubMed
Google Scholar
Anderson S (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:474–476
CAS
CrossRef
PubMed
Google Scholar
Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nat Rev Neurosci 7(9):687–696
CAS
CrossRef
PubMed
Google Scholar
Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294(5544):1071–1074
CAS
CrossRef
PubMed
Google Scholar
Tabata H, Nakajima K (2003) Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci 23(31):9996–10001
CAS
PubMed
Google Scholar
Shimogori T (2006) Micro in utero electroporation for efficient gene targeting in mouse embryos. In: Friedmann T, Rossi J (eds) Gene transfer: delivery and expression of DNA and RNA, a laboratory manual. Cold Spring Harbor Laboratory Press, p 427–432
Google Scholar
Shimogori T, Ogawa M (2008) Gene application with in utero electroporation in mouse embryonic brain. Dev Growth Differ 50(6):499–506
CAS
CrossRef
PubMed
Google Scholar
Matsui A, Yoshida AC, Kubota M, Ogawa M, Shimogori T (2011) Mouse in utero electroporation: controlled spatiotemporal gene transfection. J Vis Exp (54): pii: 3024
Google Scholar
García-Moreno F, Vasistha NA, Begbie J, Molnár Z (2014) CLoNe is a new method to target single progenitors and study their progeny in mouse and chick. Development 141(7):1589–1598
PubMed Central
CrossRef
PubMed
Google Scholar
Vasistha NA, García-Moreno F, Arora S, Cheung AF, Arnold SJ, Robertson EJ, Molnár Z (2014) Cortical and clonal contribution of Tbr2 expressing progenitors in the developing mouse brain. Cereb Cortex. pii: bhu125.
Marques-Smith A (2014) Using optical stimulation to study the developing thalamocortical circuit in mouse somatosensory cortex. D Phil thesis, University of Oxford
Google Scholar
Borrell V, Yoshimura Y, Callaway EM (2005) Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation. J Neurosci Methods 143(2):151–158
CAS
CrossRef
PubMed
Google Scholar
de Marco Garcia NV, Fishell G (2014) Subtype-selective electroporation of cortical interneurons. J Vis Exp. (90): e51518
Google Scholar
Nakahira E, Yuasa S (2005) Neuronal generation, migration, and differentiation in the mouse hippocampal primordium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation. J Comp Neurol 483(3):329–340
CrossRef
PubMed
Google Scholar
dal Maschio M, Ghezzi D, Bony G, Alabastri A, Deidda G, Brondi M, Sato SS, Zaccaria RP, Di Fabrizio E, Ratto GM, Cancedda L (2012) High-performance and site-directed in utero electroporation by a triple-electrode probe. Nat Commun 3:960
CrossRef
PubMed
Google Scholar
Okada T, Keino-Masu K, Masu M (2007) Migration and nucleogenesis of mouse precerebellar neurons visualized by in utero electroporation of a green fluorescent protein gene. Neurosci Res 57(1):40–49
CAS
CrossRef
PubMed
Google Scholar
Navarro-Quiroga I, Chittajallu R, Gallo V, Haydar TF (2007) Long-term, selective gene expression in developing and adult hippocampal pyramidal neurons using focal in utero electroporation. J Neurosci 27(19):5007–5011
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Ito H, Morishita R, Iwamoto I, Nagata K (2014) Establishment of an in vivo electroporation. Hippocampus 24(12):1449–1457
CrossRef
PubMed
Google Scholar
García-Frigola C, Carreres MI, Vegar C, Herrera E (2007) Gene delivery into mouse retinal ganglion cells by in utero electroporation. BMC Dev Biol 7:103
PubMed Central
CrossRef
PubMed
Google Scholar
LoTurco J, Manent JB, Sidiqi F (2009) New and improved tools for in utero electroporation studies of developing cerebral cortex. Cereb Cortex 19(Suppl 1):i120–i125
PubMed Central
CrossRef
PubMed
Google Scholar
García-Moreno F, Pedraza M, Di Giovannantonio LG, Di Salvio M, López-Mascaraque L, Simeone A, De Carlos JA (2010) A neuronal migratory pathway crossing from diencephalon to telencephalon populates amygdala nuclei. Nat Neurosci 13:680–689
CrossRef
PubMed
Google Scholar
Langevin LM, Mattar P, Scardigli R, Roussigné M, Logan C, Blader P, Schuurmans C (2007) Validating in utero electroporation for the rapid analysis of gene regulatory elements in the murine telencephalon. Dev Dyn 236(5):1273–1286
CAS
CrossRef
PubMed
Google Scholar
Saito T (2006) In vivo electroporation in the embryonic mouse central nervous system. Nat Protoc 1(3):1552–1558
CAS
CrossRef
PubMed
Google Scholar
Walantus W, Castaneda D, Elias L, Kriegstein A (2007) In utero intraventricular injection and electroporation of E15 mouse embryos. J Vis Exp. (6):239
Google Scholar
Dixit R, Lu F, Cantrup R, Gruenig N, Langevin LM, Kurrasch DM, Schuurmans C (2011) Efficient gene delivery into multiple CNS territories using in utero electroporation. J Vis Exp (52): pii: 2957
Google Scholar
Rana ZA, Ekmark M, Gundersen K (2004) Coexpression after electroporation of plasmid mixtures into muscle in vivo. Acta Physiol Scand 181:233–238
CAS
CrossRef
PubMed
Google Scholar
Paracchini S, Thomas A, Castro S, Lai C, Paramasivam M, Wang Y, Keating BJ, Taylor JM, Hacking DF, Scerri T, Francks C, Richardson AJ, Wade-Martins R, Stein JF, Knight JC, Copp AJ, Loturco J, Monaco AP (2006) The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Hum Mol Genet 15(10):1659–1666
CAS
CrossRef
PubMed
Google Scholar
García-Marqués J, López-Mascaraque L (2013) Clonal identity determines astrocyte cortical heterogeneity. Cereb Cortex 23(6):1463–1472
CrossRef
PubMed
Google Scholar
Siddiqi F, Chen F, Aron AW, Fiondella CG, Patel K, LoTurco JJ (2014) Fate mapping by piggyBac transposase reveals that neocortical GLAST+ progenitors generate more astrocytes than Nestin+ progenitors in rat neocortex. Cereb Cortex 24:508
PubMed Central
CrossRef
PubMed
Google Scholar
García-Marqués J, Nunez-Llaves R, López-Mascaraque L (2014) NG2-glia from pallial progenitors produce the largest clonal clusters of the brain: time frame of clonal generation in cortex and olfactory bulb. J Neurosci 34:2305–2313
CrossRef
PubMed
Google Scholar
Chen F, Maher BJ, LoTurco JJ (2014) piggyBac transposon-mediated cellular transgenesis in mammalian forebrain by in utero electroporation. Cold Spring Harb Protoc 2014(7):741–749
CrossRef
PubMed
Google Scholar
Johns DC, Marx R, Mains RE, O’Rourke B, Marbán E (1999) Inducible genetic suppression of neuronal excitability. J Neurosci 19(5):1691–1697
CAS
PubMed
Google Scholar
Mire E, Mezzera C, Leyva-Díaz E, Paternain AV, Squarzoni P, Bluy L, Castillo-Paterna M, López MJ, Peregrín S, Tessier-Lavigne M, Garel S, Galcerán J, Lerma J, López-Bendito G (2012) Spontaneous activity regulates Robo1 transcription to mediate a switch in thalamocortical axon growth. Nat Neurosci 15(8):1134–1143
CAS
CrossRef
PubMed
Google Scholar
Suárez R, Fenlon LR, Marek R, Avitan L, Sah P, Goodhill GJ, Richards LJ (2014) Balanced interhemispheric cortical activity is required for correct targeting of the corpus callosum. Neuron 82(6):1289–1298
CrossRef
PubMed
Google Scholar
Crick FH (1979) Thinking about the brain. Sci Am 241:219–232
CAS
CrossRef
PubMed
Google Scholar
Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34(1):389–412
CAS
CrossRef
PubMed
Google Scholar
Miesenböck G (2011) Optogenetic control of cells and circuits. Annu Rev Cell Dev Biol 27:731–758
PubMed Central
CrossRef
PubMed
Google Scholar
Bernstein JG, Garrity PA, Boyden ES (2012) Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr Opin Neurobiol 22:61–71
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268
CAS
CrossRef
PubMed
Google Scholar
Zemelman BV, Lee GA, Ng M, Miesenböck G (2002) Selective photostimulation of genetically chARGed neurons. Neuron 33:15–22
CAS
CrossRef
PubMed
Google Scholar
Zemelman BV, Nesnas N, Lee GA, Miesenböck G (2003) Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc Natl Acad Sci U S A 100:1352–1357
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Lima SQ, Miesenböck G (2005) Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121:141–152
CAS
CrossRef
PubMed
Google Scholar
Zhang F, Wang L-P, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639
CAS
CrossRef
PubMed
Google Scholar
Rickgauer JP, Tank DW (2009) Two-photon excitation of channelrhodopsin-2 at saturation. Proc Natl Acad Sci U S A 106:15025–15030
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Vaziri A, Emiliani V (2012) Reshaping the optical dimension in optogenetics. Curr Opin Neurobiol 22:128–137
CAS
CrossRef
PubMed
Google Scholar
Packer AM, Peterka DS, Hirtz JJ, Prakash R, Deisseroth K, Yuste R (2012) Two-photon optogenetics of dendritic spines and neural circuits. Nat Methods 9:1202–1205
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Packer AM, Roska B, Häusser M (2013) Targeting neurons and photons for optogenetics. Nat Neurosci 16:805–815
CAS
CrossRef
PubMed
Google Scholar
Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections. Nat Neurosci 10:663–668
CAS
CrossRef
PubMed
Google Scholar
Petreanu L, Mao T, Sternson SM, Svoboda K (2009) The subcellular organization of neocortical excitatory connections. Nature 457:1142–1145
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Kätzel D, Buetfering C, Wölfel M, Miesenböck G (2010) The columnar and laminar organization of inhibitory connections to neocortical excitatory cells. Nat Neurosci 14:100–107
PubMed Central
CrossRef
PubMed
Google Scholar
Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M (2013) Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 16:1068–1076
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Atallah BV, Bruns W, Carandini M, Scanziani M (2012) Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73:159–170
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Wilson NR, Runyan CA, Wang FL, Sur M (2012) Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488:343
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Lee S-H, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG, Masmanidis SC, Taniguchi H, Huang ZJ, Zhang F, Boyden ES et al (2012) Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488:379
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Dalva MB, Katz LC (1994) Rearrangements of synaptic connections in visual cortex revealed by laser photostimulation. Science 265:255–258
CAS
CrossRef
PubMed
Google Scholar
Bureau I, Shepherd GMG, Svoboda K (2004) Precise development of functional and anatomical columns in the neocortex. Neuron 42:789–801
CAS
CrossRef
PubMed
Google Scholar
Viswanathan S, Bandyopadhyay S, Kao JPY, Kanold PO (2012) Changing microcircuits in the subplate of the developing cortex. J Neurosci 32:1589–1601
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Anastasiades PG, Butt SJB (2012) A role for silent synapses in the development of the pathway from layer 2/3 to 5 pyramidal cells in the neocortex. J Neurosci 32:13085–13099
CAS
CrossRef
PubMed
Google Scholar
Grant E, Hoerder-Suabedissen A, Molnár Z (2012) Development of the corticothalamic projections. Front Neurosci 6:53
PubMed Central
CrossRef
PubMed
Google Scholar
Catalano SM, Shatz CJ (1998) Activity-dependent cortical target selection by thalamic axons. Science 281:559–562
CAS
CrossRef
PubMed
Google Scholar
Zhang J, Ackman JB, Xu H-P, Crair MC (2012) Visual map development depends on the temporal pattern of binocular activity in mice. Nat Neurosci 15:298–307
CAS
CrossRef
Google Scholar
Zhang F, Prigge M, Beyrière F, Tsunoda SP, Mattis J, Yizhar O, Hegemann P, Deisseroth K (2008) Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat Neurosci 11:631–633
PubMed Central
CrossRef
PubMed
Google Scholar
Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16: 1499–1508
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Luhmann HJ, Hanganu I, Kilb W (2003) Cellular physiology of the neonatal rat cerebral cortex. Curr Opin Neurobiol 60:345–353
CAS
Google Scholar
Minlebaev M, Colonnese M, Tsintsadze T, Sirota A, Khazipov R (2011) Early gamma oscillations synchronize developing thalamus and cortex. Science 334:226–229
CAS
CrossRef
PubMed
Google Scholar
Tolner EA, Sheikh A, Yukin AY, Kaila K, Kanold PO (2012) Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex. J Neurosci 32:692–702
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Gil-Sanz C, Franco SJ, Martinez-Garay I, Espinosa A, Harkins-Perry S, Müller U (2013) Cajal-Retzius cells instruct neuronal migration by coincidence signaling between secreted and contact-dependent guidance cues. Neuron 79(3):461–477
PubMed Central
CAS
CrossRef
PubMed
Google Scholar
Borrell V (2010) In vivo gene delivery to the postnatal ferret cerebral cortex by DNA electroporation. J Neurosci Methods 186(2):186–195
CAS
CrossRef
PubMed
Google Scholar
Kawasaki H, Iwai L, Tanno K (2012) Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation Mol. Brain 5:24
Google Scholar
Kawasaki H, Toda T, Tanno K (2013) In vivo genetic manipulation of cortical progenitors in gyrencephalic carnivores using in utero electroporation. Biol Open 2(1):95–100
PubMed Central
CrossRef
PubMed
Google Scholar
Kawasaki H (2014) Molecular investigations of the brain of higher mammals using gyrencephalic carnivore ferrets. Neurosci Res 86:59, pii: S0168-0102(14)00117-5
CAS
CrossRef
PubMed
Google Scholar
Itasaki N, Bel-Vialar S, Krumlauf R (1999) “Shocking” developments in chick embryology: electroporation and in ovo gene expression. Nat Cell Biol 1:E203–E207
CAS
CrossRef
PubMed
Google Scholar
Krull CE (2004) A primer on using in ovo electroporation to analyze gene function. Dev Dyn 229:433–439
CAS
CrossRef
PubMed
Google Scholar
Croteau LP, Kania A (2011) Optimisation of in ovo electroporation. J Neurosci Methods 201(2):381–384
CAS
CrossRef
PubMed
Google Scholar
Nomura T, Takahashi M, Hara Y, Osumi N (2008) Patterns of neurogenesis and amplitude of reelin expression are essential for making a mammalian-type cortex. PLoS One 3:e1454
PubMed Central
CrossRef
PubMed
Google Scholar
Suzuki IK, Kawasaki T, Gojobori T, Hirata T (2012) The temporal sequence of the mammalian neocortical neurogenetic program drives mediolateral pattern in the chick pallium. Dev Cell 22:863–870
CAS
CrossRef
PubMed
Google Scholar
García-Moreno F, Molnár Z (unpublished) A subset of early radial glial cells with delayed neurogenic program selectively contribute to the development and evolution of callosal connecting neurons
Google Scholar
Nomura T, Gotoh H, Ono K (2013) Changes in the regulation of cortical neurogenesis contribute to encephalization during amniote brain evolution. Nat Commun 4:2006
Google Scholar
Nomura T, Kawaguchi M, Ono K, Murakami Y (2013) Reptiles: a new model for brain evo-devo research. J Exp Zool B Mol Dev Evol 320:57–73
CrossRef
PubMed
Google Scholar
Wang X, Chang L, Guo Z, Li W, Liu W, Cai B, Wang J (2013) Neonatal SVZ EGFP-labeled cells produce neurons in the olfactory bulb and astrocytes in the cerebral cortex by in-vivo electroporation. Neuroreport 24(7):381–387
CrossRef
PubMed
Google Scholar
Feliciano DM, Lafourcade CA, Bordey A (2013) Neonatal subventricular zone electroporation. J Vis Exp (72): pii:50197
Google Scholar
Louise C, Etienne D, Marie-Pierre R (2014) AFM sensing cortical actin cytoskeleton destabilization during plasma membrane electropermeabilization. Cytoskeleton (Hoboken) 71(10):587–594
CAS
CrossRef
Google Scholar