Prediction of Antibody Epitopes

Part of the Methods in Molecular Biology book series (MIMB, volume 1348)


Antibodies recognize their cognate antigens in a precise and effective way. In order to do so, they target regions of the antigenic molecules that have specific features such as large exposed areas, presence of charged or polar atoms, specific secondary structure elements, and lack of similarity to self-proteins. Given the sequence or the structure of a protein of interest, several methods exploit such features to predict the residues that are more likely to be recognized by an immunoglobulin.

Here, we present two methods (BepiPred and DiscoTope) to predict linear and discontinuous antibody epitopes from the sequence and/or the three-dimensional structure of a target protein.


Epitope Linear epitope Discontinuous epitope Prediction 


  1. 1.
    Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6:343–357. doi: 10.1038/nri1837 CrossRefPubMedGoogle Scholar
  2. 2.
    Davies DR, Cohen GH (1996) Interactions of protein antigens with antibodies. Proc Natl Acad Sci U S A 93:7–12PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Birtalan S, Zhang Y, Fellouse FA, Shao L, Schaefer G, Sidhu SS (2008) The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. J Mol Biol 377:1518–1528. doi: 10.1016/j.jmb.2008.01.093 CrossRefPubMedGoogle Scholar
  4. 4.
    Bond CJ, Marsters JC, Sidhu SS (2003) Contributions of CDR3 to V H H domain stability and the design of monobody scaffolds for naive antibody libraries. J Mol Biol 332:643–655CrossRefPubMedGoogle Scholar
  5. 5.
    Sethi DK, Agarwal A, Manivel V, Rao KV, Salunke DM (2006) Differential epitope positioning within the germline antibody paratope enhances promiscuity in the primary immune response. Immunity 24(4):429–438. doi: 10.1016/j.immuni.2006.02.010 CrossRefPubMedGoogle Scholar
  6. 6.
    Daugherty PS, Chen G, Iverson BL, Georgiou G (2000) Quantitative analysis of the effect of the mutation frequency on the affinity maturation of single chain Fv antibodies. Proc Natl Acad Sci U S A 97:2029–2034. doi: 10.1073/pnas.030527597 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Neuberger MS, Ehrenstein MR, Rada C, Sale J, Batista FD, Williams G, Milstein C (2000) Memory in the B-cell compartment: antibody affinity maturation. Phil Transact Royal Soc London Ser B Biol Sci 355:357–360. doi: 10.1098/rstb.2000.0573 CrossRefGoogle Scholar
  8. 8.
    Wabl M, Cascalho M, Steinberg C (1999) Hypermutation in antibody affinity maturation. Curr Opin Immunol 11:186–189CrossRefPubMedGoogle Scholar
  9. 9.
    Olimpieri PP, Marcatili P, Tramontano A (2014) Tabhu: tools for antibody humanization. Bioinformatics. doi: 10.1093/bioinformatics/btu667 PubMedCentralPubMedGoogle Scholar
  10. 10.
    Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159. doi: 10.1038/nrd1957 CrossRefPubMedGoogle Scholar
  11. 11.
    Shirai H, Prades C, Vita R, Marcatili P, Popovic B, Xu J, Overington JP, Hirayama K, Soga S, Tsunoyama K, Clark D, Lefranc MP, Ikeda K (2014) Antibody informatics for drug discovery. Biochim Biophys Acta 1844:2002–2015. doi: 10.1016/j.bbapap.2014.07.006 CrossRefPubMedGoogle Scholar
  12. 12.
    Chailyan A, Tramontano A, Marcatili P (2012) A database of immunoglobulins with integrated tools: DIGIT. Nucleic Acids Res 40(Database issue):D1230–1234. doi: 10.1093/nar/gkr806 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Lefranc M (2014) Immunoglobulins: 25 Years of Immunoinformatics and IMGT-ONTOLOGY. Biomolecules 4:1102–1139. doi: 10.3390/biom4041102 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK, Gabbard JL, Hix D, Sette A, Peters B (2014) The immune epitope database (IEDB) 3.0. Nucleic Acids Res doi: 10.1093/nar/gku938
  15. 15.
    Dunbar J, Krawczyk K, Leem J, Baker T, Fuchs A, Georges G, Shi J, Deane CM (2014) SAbDab: the structural antibody database. Nucleic Acids Res 42(Database issue):D1140–1146. doi: 10.1093/nar/gkt1043 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Allcorn LC, Martin AC (2002) SACS–self-maintaining database of antibody crystal structure information. Bioinformatics 18:175–181CrossRefPubMedGoogle Scholar
  17. 17.
    Blythe MJ, Flower DR (2005) Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci 14:246–248. doi: 10.1110/ps.041059505 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Greenbaum JA, Andersen PH, Blythe M, Bui HH, Cachau RE, Crowe J, Davies M, Kolaskar AS, Lund O, Morrison S, Mumey B, Ofran Y, Pellequer JL, Pinilla C, Ponomarenko JV, Raghava GP, van Regenmortel MH, Roggen EL, Sette A, Schlessinger A, Sollner J, Zand M, Peters B (2007) Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit 20:75–82. doi: 10.1002/jmr.815 CrossRefPubMedGoogle Scholar
  19. 19.
    Haste Andersen P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15:2558–2567. doi: 10.1110/ps.062405906 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Kringelum JV, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8, e1002829. doi: 10.1371/journal.pcbi.1002829 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Kringelum JV, Nielsen M, Padkjaer SB, Lund O (2013) Structural analysis of B-cell epitopes in antibody:protein complexes. Mol Immunol 53:24–34. doi: 10.1016/j.molimm.2012.06.001 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2. doi: 10.1186/1745-7580-2-2 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Buus S, Rockberg J, Forsstrom B, Nilsson P, Uhlen M, Schafer-Nielsen C (2012) High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays. Mol Cell Proteom 11:1790–1800. doi: 10.1074/mcp.M112.020800 CrossRefGoogle Scholar
  24. 24.
    Hansen LB, Buus S, Schafer-Nielsen C (2013) Identification and mapping of linear antibody epitopes in human serum albumin using high-density Peptide arrays. PLoS One 8, e68902. doi: 10.1371/journal.pone.0068902 PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Brenke R, Hall DR, Chuang GY, Comeau SR, Bohnuud T, Beglov D, Schueler-Furman O, Vajda S, Kozakov D (2012) Application of asymmetric statistical potentials to antibody-protein docking. Bioinformatics 28:2608–2614. doi: 10.1093/bioinformatics/bts493 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Krawczyk K, Baker T, Shi J, Deane CM (2013) Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking. Protein Eng Des Sel 26:621–629. doi: 10.1093/protein/gzt043 CrossRefPubMedGoogle Scholar
  27. 27.
    Krawczyk K, Liu X, Baker T, Shi J, Deane CM (2014) Improving B-cell epitope prediction and its application to global antibody-antigen docking. Bioinformatics 30:2288–2294. doi: 10.1093/bioinformatics/btu190 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Chen J, Liu H, Yang J, Chou KC (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33:423–428. doi: 10.1007/s00726-006-0485-9 CrossRefPubMedGoogle Scholar
  29. 29.
    Costa JG, Faccendini PL, Sferco SJ, Lagier CM, Marcipar IS (2013) Evaluation and comparison of the ability of online available prediction programs to predict true linear B-cell epitopes. Prot Pept Lett 20:724–730CrossRefGoogle Scholar
  30. 30.
    Kulkarni-Kale U, Bhosle S, Kolaskar AS (2005) CEP: a conformational epitope prediction server. Nucleic Acids Res 33 (Web Server issue):W168–171. doi: 10.1093/nar/gki460
  31. 31.
    Odorico M, Pellequer JL (2003) BEPITOPE: predicting the location of continuous epitopes and patterns in proteins. J Mol Recognit 16:20–22. doi: 10.1002/jmr.602 CrossRefPubMedGoogle Scholar
  32. 32.
    Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9:514. doi: 10.1186/1471-2105-9-514 PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Ponomarenko JV, Bourne PE (2007) Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct Biol 7:64. doi: 10.1186/1472-6807-7-64 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Reimer U (2009) Prediction of linear B-cell epitopes. Methods Mol Biol 524:335–344. doi: 10.1007/978-1-59745-450-6_24 CrossRefPubMedGoogle Scholar
  35. 35.
    Sollner J (2006) Selection and combination of machine learning classifiers for prediction of linear B-cell epitopes on proteins. J Mol Recognit 19:209–214. doi: 10.1002/jmr.770 CrossRefPubMedGoogle Scholar
  36. 36.
    Sollner J, Mayer B (2006) Machine learning approaches for prediction of linear B-cell epitopes on proteins. J Mol Recognit 19:200–208. doi: 10.1002/jmr.771 CrossRefPubMedGoogle Scholar
  37. 37.
    Sun J, Wu D, Xu T, Wang X, Xu X, Tao L, Li YX, Cao ZW (2009) SEPPA: a computational server for spatial epitope prediction of protein antigens. Nucleic Acids Res 37 (Web Server issue):W612–616. doi: 10.1093/nar/gkp417
  38. 38.
    Wang HW, Lin YC, Pai TW, Chang HT (2011) Prediction of B-cell linear epitopes with a combination of support vector machine classification and amino acid propensity identification. J Biomed Biotechnol 2011:432830. doi: 10.1155/2011/432830 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Wang HW, Pai TW (2014) Machine learning-based methods for prediction of linear B-cell epitopes. Methods Mol Biol 1184:217–236. doi: 10.1007/978-1-4939-1115-8_12 CrossRefPubMedGoogle Scholar
  40. 40.
    Wee LJ, Simarmata D, Kam YW, Ng LF, Tong JC (2010) SVM-based prediction of linear B-cell epitopes using Bayes Feature Extraction. BMC Genomics 11 Suppl 4:S21. doi: 10.1186/1471-2164-11-S4-S21
  41. 41.
    Yang J, Liu N, Zhang T, Zhao S, Qiang L, Su B, Kang A, Li Z (2013) (Prediction and identification of B-cell linear epitopes of hepatitis B e antigen). Nan fang yi ke da xue xue bao (J Southern Med Univ 33:253–257Google Scholar
  42. 42.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4:1–13. doi: 10.1038/nprot.2008.197 CrossRefPubMedGoogle Scholar
  44. 44.
    Webb B, Sali A (2014) Comparative Protein Structure Modeling Using MODELLER. Curr Protocols Bioinformatics (Baxevanis AD et al Eds) 47:5 6 1–5 6 32. doi: 10.1002/0471250953.bi0506s47
  45. 45.
    Nielsen M, Lundegaard C, Lund O, Petersen TN (2010) CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles. Nucleic Acids Res 38 (Web Server issue):W576–581. doi: 10.1093/nar/gkq535
  46. 46.
    Schrodinger, LLC (2010) The PyMOL Molecular Graphics System, Version 1.3r1.Google Scholar
  47. 47.
    Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. doi: 10.1002/elps.1150181505 CrossRefPubMedGoogle Scholar
  48. 48.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graphics 14(33–38):27–38Google Scholar
  49. 49.
    Bernsel A, Viklund H, Hennerdal A, Elofsson A (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37 (Web Server issue):W465–468. doi: 10.1093/nar/gkp363
  50. 50.
    Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. doi: 10.1006/jmbi.2000.4315 CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang QC, Petrey D, Garzon JI, Deng L, Honig B (2013) PrePPI: a structure-informed database of protein-protein interactions. Nucleic Acids Res 41(Database issue):D828–833. doi: 10.1093/nar/gks1231 PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA (2009) Antibody recognition of a highly conserved influenza virus epitope. Science 324:246–251. doi: 10.1126/science.1171491 PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A 80:6126–6130PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM, Saag MS, Komarova NL, Nowak MA, Hahn BH, Kwong PD, Shaw GM (2003) Antibody neutralization and escape by HIV-1. Nature 422(6929):307–312. doi: 10.1038/nature01470 CrossRefPubMedGoogle Scholar
  55. 55.
    Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362. doi: 10.1006/jmbi.1999.3310 CrossRefPubMedGoogle Scholar
  56. 56.
    Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649. doi: 10.1002/pmic.200300771 CrossRefPubMedGoogle Scholar
  57. 57.
    Hansen JE, Lund O, Tolstrup N, Gooley AA, Williams KL, Brunak S (1998) NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 15:115–130CrossRefPubMedGoogle Scholar
  58. 58.
    Julenius K, Molgaard A, Gupta R, Brunak S (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15:153–164. doi: 10.1093/glycob/cwh151 CrossRefPubMedGoogle Scholar
  59. 59.
    Brunham RC, Plummer FA, Stephens RS (1993) Bacterial antigenic variation, host immune response, and pathogen-host coevolution. Infect Immun 61:2273–2276PubMedCentralPubMedGoogle Scholar
  60. 60.
    McKenzie GJ, Rosenberg SM (2001) Adaptive mutations, mutator DNA polymerases and genetic change strategies of pathogens. Curr Opin Microbiol 4:586–594CrossRefPubMedGoogle Scholar
  61. 61.
    Armon A, Graur D, Ben-Tal N (2001) ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J Mol Biol 307:447–463. doi: 10.1006/jmbi.2000.4474 CrossRefPubMedGoogle Scholar
  62. 62.
    Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38 (Web Server issue):W529–533. doi: 10.1093/nar/gkq399
  63. 63.
    Marcatili P, Olimpieri PP, Chailyan A, Tramontano A (2014) Antibody structural modeling with prediction of immunoglobulin structure (PIGS). Nat Protoc 9:2771–2783. doi: 10.1038/nprot.2014.189 CrossRefPubMedGoogle Scholar
  64. 64.
    Marcatili P, Rosi A, Tramontano A (2008) PIGS: automatic prediction of antibody structures. Bioinformatics 24:1953–1954. doi: 10.1093/bioinformatics/btn341 CrossRefPubMedGoogle Scholar
  65. 65.
    Sircar A, Kim ET, Gray JJ (2009) RosettaAntibody: antibody variable region homology modeling server. Nucleic Acids Res 37 (Web Server issue):W474–479. doi: 10.1093/nar/gkp387
  66. 66.
    Weitzner BD, Kuroda D, Marze N, Xu J, Gray JJ (2014) Blind prediction performance of RosettaAntibody 3.0: grafting, relaxation, kinematic loop modeling, and full CDR optimization. Proteins 82:1611–1623. doi: 10.1002/prot.24534 PubMedCentralCrossRefPubMedGoogle Scholar
  67. 67.
    Yamashita K, Ikeda K, Amada K, Liang S, Tsuchiya Y, Nakamura H, Shirai H, Standley DM (2014) Kotai Antibody Builder: automated high-resolution structural modeling of antibodies. Bioinformatics 30:3279–3280. doi: 10.1093/bioinformatics/btu510 CrossRefPubMedGoogle Scholar
  68. 68.
    Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36 (Web Server issue):W233–238. doi: 10.1093/nar/gkn216
  69. 69.
    Sircar A, Gray JJ (2010) SnugDock: paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models. PLoS Comput Biol 6, e1000644. doi: 10.1371/journal.pcbi.1000644 PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Sivasubramanian A, Sircar A, Chaudhury S, Gray JJ (2009) Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking. Proteins 74:497–514. doi: 10.1002/prot.22309 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Systems Biology, Center for Biological Sequence AnalysisTechnical University of DenmarkLyngbyDenmark
  2. 2.Instituto de Investigaciones BiotecnológicasUniversidad Nacional de San MartínBuenos AiresArgentina

Personalised recommendations