Skip to main content

Characterizing Phenotypes and Signaling Networks of Single Human Cells by Mass Cytometry

  • Protocol

Part of the Methods in Molecular Biology book series (MIMB,volume 1346)

Abstract

Single cell mass cytometry is revolutionizing our ability to quantitatively characterize cellular biomarkers and signaling networks. Mass cytometry experiments routinely measure 25–35 features of each cell in primary human tissue samples. The relative ease with which a novice user can generate a large amount of high quality data and the novelty of the approach have created a need for example protocols, analysis strategies, and datasets. In this chapter, we present detailed protocols for two mass cytometry experiments designed as training tools. The first protocol describes detection of 26 features on the surface of human peripheral blood mononuclear cells. In the second protocol, a mass cytometry signaling network profile measures 25 node states comprised of five key signaling effectors (AKT, ERK1/2, STAT1, STAT5, and p38) quantified under five conditions (Basal, FLT3L, SCF, IL-3, and IFNγ). This chapter compares manual and unsupervised data analysis approaches, including bivariate plots, heatmaps, histogram overlays, SPADE, and viSNE. Data files in this chapter have been shared online using Cytobank (http://www.cytobank.org/irishlab/).

Key words

  • Single cell biology
  • Mass cytometry (CyTOF)
  • Human
  • Immunophenotyping
  • Signaling network profile
  • Phospho-specific flow cytometry (phospho-flow)

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Irish JM (2014) Beyond the age of cellular discovery. Nat Immunol 15:1095–1097

    CrossRef  CAS  PubMed  Google Scholar 

  2. Irish JM, Doxie DB (2014) High-dimensional single-cell cancer biology. Curr Top Microbiol Immunol 377:1–21

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12(5):323–334

    CrossRef  CAS  PubMed  Google Scholar 

  4. Kleppe M, Levine RL (2014) Tumor heterogeneity confounds and illuminates: assessing the implications. Nat Med 20(4):342–344

    CrossRef  CAS  PubMed  Google Scholar 

  5. Irish JM et al (2004) Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118(2):217–228

    CrossRef  CAS  PubMed  Google Scholar 

  6. Irish JM et al (2010) B-cell signaling networks reveal a negative prognostic human lymphoma cell subset that emerges during tumor progression. Proc Natl Acad Sci U S A 107(29):12747–12754

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  7. Krutzik PO et al (2004) Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol 110(3):206–221

    CrossRef  CAS  PubMed  Google Scholar 

  8. Irish JM, Kotecha N, Nolan GP (2006) Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat Rev Cancer 6(2):146–155

    CrossRef  CAS  PubMed  Google Scholar 

  9. Bendall SC et al (2012) A deep profiler’s guide to cytometry. Trends Immunol 33(7):323–332

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  10. Bendall SC et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ornatsky O et al (2010) Highly multiparametric analysis by mass cytometry. J Immunol Methods 361(1-2):1–20

    CrossRef  CAS  PubMed  Google Scholar 

  12. Bendall SC et al (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157(3):714–725

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  13. Newell EW et al (2012) Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36(1):142–152

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  14. Becher B et al (2014) High-dimensional analysis of the murine myeloid cell system. Nat Immunol 15(12):1181–1189

    CrossRef  CAS  PubMed  Google Scholar 

  15. Krutzik PO, Nolan GP (2003) Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry A 55(2):61–70

    CrossRef  PubMed  Google Scholar 

  16. Bodenmiller B et al (2012) Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 30(9):858–867

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kotecha N, Krutzik PO, Irish JM (2010) Web-based analysis and publication of flow cytometry experiments. Curr Protoc Cytom Chapter 10:Unit10.17

    Google Scholar 

  18. Qiu P et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29(10):886–891

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  19. el Amir AD et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31(6):545–552

    CrossRef  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P.B. Ferrell for use of Kasumi-1 mass cytometry data. This work was supported by the NIH/NCI R00 CA143231, NIH/NCI R25 CA136440 (K.E.D.), the Vanderbilt International Scholars Program (N.L.), and Vanderbilt-Ingram Cancer Center (VICC NIH/NCI P50 CA68485) pilot grants including a Young Ambassador award.

Conflict of interest disclosure: J.M.I. declares a competing financial interest (cofounder and board member of Cytobank Inc.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Irish Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Leelatian, N., Diggins, K.E., Irish, J.M. (2015). Characterizing Phenotypes and Signaling Networks of Single Human Cells by Mass Cytometry. In: Singh, A., Chandrasekaran, A. (eds) Single Cell Protein Analysis. Methods in Molecular Biology, vol 1346. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2987-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2987-0_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2986-3

  • Online ISBN: 978-1-4939-2987-0

  • eBook Packages: Springer Protocols