Characterizing Phenotypes and Signaling Networks of Single Human Cells by Mass Cytometry

  • Nalin Leelatian
  • Kirsten E. Diggins
  • Jonathan M. Irish
Part of the Methods in Molecular Biology book series (MIMB, volume 1346)

Abstract

Single cell mass cytometry is revolutionizing our ability to quantitatively characterize cellular biomarkers and signaling networks. Mass cytometry experiments routinely measure 25–35 features of each cell in primary human tissue samples. The relative ease with which a novice user can generate a large amount of high quality data and the novelty of the approach have created a need for example protocols, analysis strategies, and datasets. In this chapter, we present detailed protocols for two mass cytometry experiments designed as training tools. The first protocol describes detection of 26 features on the surface of human peripheral blood mononuclear cells. In the second protocol, a mass cytometry signaling network profile measures 25 node states comprised of five key signaling effectors (AKT, ERK1/2, STAT1, STAT5, and p38) quantified under five conditions (Basal, FLT3L, SCF, IL-3, and IFNγ). This chapter compares manual and unsupervised data analysis approaches, including bivariate plots, heatmaps, histogram overlays, SPADE, and viSNE. Data files in this chapter have been shared online using Cytobank (http://www.cytobank.org/irishlab/).

Key words

Single cell biology Mass cytometry (CyTOF) Human Immunophenotyping Signaling network profile Phospho-specific flow cytometry (phospho-flow) 

References

  1. 1.
    Irish JM (2014) Beyond the age of cellular discovery. Nat Immunol 15:1095–1097CrossRefPubMedGoogle Scholar
  2. 2.
    Irish JM, Doxie DB (2014) High-dimensional single-cell cancer biology. Curr Top Microbiol Immunol 377:1–21PubMedCentralPubMedGoogle Scholar
  3. 3.
    Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12(5):323–334CrossRefPubMedGoogle Scholar
  4. 4.
    Kleppe M, Levine RL (2014) Tumor heterogeneity confounds and illuminates: assessing the implications. Nat Med 20(4):342–344CrossRefPubMedGoogle Scholar
  5. 5.
    Irish JM et al (2004) Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118(2):217–228CrossRefPubMedGoogle Scholar
  6. 6.
    Irish JM et al (2010) B-cell signaling networks reveal a negative prognostic human lymphoma cell subset that emerges during tumor progression. Proc Natl Acad Sci U S A 107(29):12747–12754PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Krutzik PO et al (2004) Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol 110(3):206–221CrossRefPubMedGoogle Scholar
  8. 8.
    Irish JM, Kotecha N, Nolan GP (2006) Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat Rev Cancer 6(2):146–155CrossRefPubMedGoogle Scholar
  9. 9.
    Bendall SC et al (2012) A deep profiler’s guide to cytometry. Trends Immunol 33(7):323–332PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Bendall SC et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Ornatsky O et al (2010) Highly multiparametric analysis by mass cytometry. J Immunol Methods 361(1-2):1–20CrossRefPubMedGoogle Scholar
  12. 12.
    Bendall SC et al (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157(3):714–725PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Newell EW et al (2012) Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36(1):142–152PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Becher B et al (2014) High-dimensional analysis of the murine myeloid cell system. Nat Immunol 15(12):1181–1189CrossRefPubMedGoogle Scholar
  15. 15.
    Krutzik PO, Nolan GP (2003) Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry A 55(2):61–70CrossRefPubMedGoogle Scholar
  16. 16.
    Bodenmiller B et al (2012) Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 30(9):858–867PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Kotecha N, Krutzik PO, Irish JM (2010) Web-based analysis and publication of flow cytometry experiments. Curr Protoc Cytom Chapter 10:Unit10.17Google Scholar
  18. 18.
    Qiu P et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29(10):886–891PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    el Amir AD et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31(6):545–552PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nalin Leelatian
    • 1
  • Kirsten E. Diggins
    • 1
  • Jonathan M. Irish
    • 1
    • 2
  1. 1.Cancer BiologyVanderbilt University School of MedicineNashvilleUSA
  2. 2.Pathology, Microbiology and ImmunologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations