Skip to main content

Microfluidic Chemical Cytometry for Enzyme Assays of Single Cells

  • Protocol
  • 2580 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 1346)

Abstract

Cellular heterogeneity occurs, and should be probed, at multiple levels of cellular structure and physiology from the genome to enzyme activity. In particular, single-cell measures of protein levels are complemented by single-cell measurements of the activity of these proteins. Microfluidic assays of enzyme activity at the single-cell level combine moderate to high throughput with low dead volumes and the potential for automation. Herein, we describe the steps required to fabricate and operate a microfluidic device for chemical cytometry of fluorescent or fluorogenic reporters of enzyme activity in individual cells.

Key words

  • Microfluidic
  • Enzyme assay
  • Chemical cytometry
  • Microchannel
  • Reporter substrate
  • Electrophoresis

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kovarik ML, Allbritton NL (2011) Measuring enzyme activity in single cells. Trends Biotechnol 29:222–230

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8:530–541

    CrossRef  CAS  PubMed  Google Scholar 

  3. Phillips KS, Lai HH, Johnson E, Sims CE, Allbritton NL (2011) Continuous analysis of dye-loaded, single cells on a microfluidic chip. Lab Chip 11:1333–1341

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kovarik ML, Shah PK, Armistead PM, Allbritton NL (2013) Microfluidic chemical cytometry of peptide degradation in single drug-treated acute myeloid leukemia cells. Anal Chem 85:4991–4997

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kovarik ML, Dickinson AJ, Roy P, Poonnen RA, Fine JP, Allbritton NL (2014) Response of single leukemic cells to peptidase inhibitor therapy across time and dose using a microfluidic device. Integr Biol. doi:10.1039/C3IB40249E

    Google Scholar 

  6. Shackman JG, Watson CJ, Kennedy RT (2004) High-throughput automated post-processing of separation data. J Chromatogr A 1040:273–282

    CrossRef  CAS  PubMed  Google Scholar 

  7. Lai HH, Quinto-Su PA, Sims CE, Bachman M, Li GP, Venugopalan V, Allbritton NL (2008) Characterization and use of laser-based lysis for cell analysis on-chip. J R Soc Interface 5:S113–S121

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  8. OZ Optics collimators and focusers – receptacle style. http://www.ozoptics.com/ALLNEW_PDF/DTS0094.pdf. Accessed 17 Jan 2014

    Google Scholar 

  9. McClain MA, Culbertson CT, Jacobson SC, Allbritton NL, Sims CE, Ramsey JM (2003) Microfluidic devices for the high-throughput chemical analysis of cells. Anal Chem 75:5646–5655

    CrossRef  CAS  PubMed  Google Scholar 

  10. Metto EC, Evans K, Barney P, Culbertson AH, Gunasekara DB, Caruso G, Hulvey MK, Fracassi da Silva JA, Lunte SM, Culbertson CT (2013) An integrated microfluidic device for monitoring changes in nitric oxide production in single T-lymphocyte (Jurkat) cells. Anal Chem 85:10188–10195

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  11. Sun Y, Yin X (2006) Novel multi-depth microfluidic chip for single cell analysis. J Chromatogr A 1117:228–233

    CrossRef  CAS  Google Scholar 

  12. Wang HY, Lu C (2006) Microfluidic chemical cytometry based on modulation of local field strength. Chem Commun 33:3528–3530

    CrossRef  Google Scholar 

  13. Greif D, Galla L, Ros A, Anselmetti D (2008) Single cell analysis in full body quartz glass chips with native UV laser-induced fluorescence detection. J Chromatogr A 1206:83–88

    CrossRef  CAS  PubMed  Google Scholar 

  14. Mellors JS, Jorabchi K, Smith LM, Ramsey JM (2010) Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal Chem 82:967–973

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  15. Xia F, Jin W, Yin X, Fang Z (2005) Single-cell analysis by electrochemical detection with a microfluidic device. J Chromatogr A 1063:227–233

    CrossRef  CAS  PubMed  Google Scholar 

  16. Ye F, Huang Y, Xu Q, Shi M, Zhao S (2010) Quantification of taurine and amino acids in mice single fibrosarcoma cell by microchip electrophoresis coupled with chemiluminescence detection. Electrophoresis 31:1630–1636

    CrossRef  CAS  PubMed  Google Scholar 

  17. Xu C, Wang M, Yin X (2011) Three-dimensional (3D) hydrodynamic focusing for continuous sampling and analysis of adherent cells. Analyst 136:3877–3883

    CrossRef  CAS  PubMed  Google Scholar 

  18. Phillips KS, Kottegoda S, Kang KM, Sims CE, Allbritton NL (2008) Separations in poly(dimethylsiloxane) microchips coated with supported bilayer membranes. Anal Chem 80:9756–9762

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kovarik ML, Lai HH, Xiong JC, Allbritton NL (2011) Sample transport and electrokinetic injection in a microchip device for chemical cytometry. Electrophoresis 32:3180–3187

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  20. OSHA Directorate of Training and Education. How electrical current affects the human body. https://www.osha.gov/SLTC/etools/construction/electrical_incidents/eleccurrent.html. Accessed 6 Jan 2014

    Google Scholar 

  21. Dickinson AJ, Armistead PM, Allbritton NL (2013) Automated capillary electrophoresis system for fast single-cell analysis. Anal Chem 85:4797–4804

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  22. Jiang D, Sims CE, Allbritton NL (2010) Microelectrophoresis platform for fast serial analysis of single cells. Electrophoresis 31:2558–2565

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  23. Okada CY, Rechsteiner M (1982) Introduction of macromolecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles. Cell 29:33–41

    CrossRef  CAS  PubMed  Google Scholar 

  24. Tsong TY (1991) Electroporation of cell membranes. Biophys J 60:297–306

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  25. Nelson AR, Borland L, Allbritton NL, Sims CE (2007) Myristoyl-based transport of peptides into living cells. Biochemistry 46:14771–14781

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  26. Madani F, Lindberg S, Langel U, Futaki S, Graslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:414729

    CrossRef  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Trinity College for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Kovarik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shehaj, L., de la Vega, L.L., Kovarik, M.L. (2015). Microfluidic Chemical Cytometry for Enzyme Assays of Single Cells. In: Singh, A., Chandrasekaran, A. (eds) Single Cell Protein Analysis. Methods in Molecular Biology, vol 1346. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2987-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2987-0_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2986-3

  • Online ISBN: 978-1-4939-2987-0

  • eBook Packages: Springer Protocols