Skip to main content

Analyzing Tau Aggregation with Electron Microscopy

  • Protocol
Protein Amyloid Aggregation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1345))

Abstract

Conversion of monomeric tau protein into filamentous aggregates is a defining event in the pathogenesis of Alzheimer’s disease. To gain insight into disease pathogenesis, the mechanisms that trigger and mediate tau aggregation are under intense investigation. Characterization efforts have relied primarily on recombinant tau protein preparations and high-throughput solution-based detection methods such as thioflavin-dye fluorescence and laser-light-scattering spectroscopies. Transmission electron microscopy (TEM) is a static imaging tool that complements these approaches by detecting individual tau filaments at nanometer resolution. In doing so, it can provide unique insight into the quality, quantity, and composition of synthetic tau filament populations. Here we describe protocols for analysis of tau filament populations by TEM for purposes of dissecting aggregation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crowther RA, Olesen OF, Jakes R, Goedert M (1992) The microtubule binding repeats of tau protein assemble into filaments like those found in Alzheimer’s disease. FEBS Lett 309:199–202

    Article  CAS  PubMed  Google Scholar 

  2. Barghorn S, Davies P, Mandelkow E (2004) Tau paired helical filaments from Alzheimer’s disease brain and assembled in vitro are based on beta-structure in the core domain. Biochemistry 43:1694–1703

    Article  CAS  PubMed  Google Scholar 

  3. King ME, Ahuja V, Binder LI, Kuret J (1999) Ligand-dependent tau filament formation: implications for Alzheimer’s disease progression. Biochemistry 38:14851–14859

    Article  CAS  PubMed  Google Scholar 

  4. Zhong Q, Congdon EE, Nagaraja HN, Kuret J (2012) Tau isoform composition influences rate and extent of filament formation. J Biol Chem 287:20711–20719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Congdon EE, Kim S, Bonchak J, Songrug T, Matzavinos A, Kuret J (2008) Nucleation-dependent tau filament formation: the importance of dimerization and an estimation of elementary rate constants. J Biol Chem 283:13806–13816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Montejo de Garcini E, Avila J (1987) In vitro conditions for the self-polymerization of the microtubule-associated protein, tau factor. J Biochem 102:1415–1421

    CAS  PubMed  Google Scholar 

  7. Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383:550–553

    Article  CAS  PubMed  Google Scholar 

  8. Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, Trojanowski JQ, Lee VM (2003) Initiation and synergistic fibrillization of tau and α-synuclein. Science 300:636–640

    Article  CAS  PubMed  Google Scholar 

  9. Gras SL, Waddington LJ, Goldie KN (2011) Transmission electron microscopy of amyloid fibrils. Methods Mol Biol 752:197–214

    Article  CAS  PubMed  Google Scholar 

  10. Sousa AA, Leapman RD (2013) Mass mapping of amyloid fibrils in the electron microscope using STEM imaging. Methods Mol Biol 950:195–207

    CAS  PubMed  Google Scholar 

  11. Carmel G, Mager EM, Binder LI, Kuret J (1996) The structural basis of monoclonal antibody Alz50’s selectivity for Alzheimer’s disease pathology. J Biol Chem 271:32789–32795

    Article  CAS  PubMed  Google Scholar 

  12. Carmel G, Leichus B, Cheng X, Patterson SD, Mirza U, Chait BT, Kuret J (1994) Expression, purification, crystallization, and preliminary x-ray analysis of casein kinase-1 from Schizosaccharomyces pombe. J Biol Chem 269:7304–7309

    CAS  PubMed  Google Scholar 

  13. Necula M, Kuret J (2004) A static laser light scattering assay for surfactant-induced tau fibrillization. Anal Biochem 333:205–215

    Article  CAS  PubMed  Google Scholar 

  14. Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky VN, Fink AL (2001) Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40:6036–6046

    Article  CAS  PubMed  Google Scholar 

  15. Kristofferson D, Karr TL, Purich DL (1980) Dynamics of linear protein polymer disassembly. J Biol Chem 255:8567–8572

    CAS  PubMed  Google Scholar 

  16. Necula M, Kuret J (2005) Site-specific pseudophosphorylation modulates the rate of tau filament dissociation. FEBS Lett 579:1453–1457

    Article  CAS  PubMed  Google Scholar 

  17. Chang E, Kim S, Yin H, Nagaraja HN, Kuret J (2008) Pathogenic missense MAPT mutations differentially modulate tau aggregation propensity at nucleation and extension steps. J Neurochem 107:1113–1123

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Funk KE, Thomas SN, Schafer KN, Cooper GL, Liao Z, Clark DJ, Yang AJ, Kuret J (2014) Lysine methylation is an endogenous post-translational modification of tau protein in human brain and a modulator of aggregation propensity. Biochem J 462:77–88

    Google Scholar 

  19. Schafer KN, Cisek K, Huseby CJ, Chang E, Kuret J (2013) Structural determinants of Tau aggregation inhibitor potency. J Biol Chem 288:32599–32611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058

    Article  CAS  PubMed  Google Scholar 

  21. Chang E, Congdon EE, Honson NS, Duff KE, Kuret J (2009) Structure-activity relationship of cyanine tau aggregation inhibitors. J Med Chem 52:3539–3547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Chirita CN, Necula M, Kuret J (2003) Anionic micelles and vesicles induce tau fibrillization in vitro. J Biol Chem 278:25644–25650

    Article  CAS  PubMed  Google Scholar 

  23. Chirita CN, Congdon EE, Yin H, Kuret J (2005) Triggers of full-length tau aggregation: a role for partially folded intermediates. Biochemistry 44:5862–5872

    Article  CAS  PubMed  Google Scholar 

  24. Necula M, Kuret J (2004) Electron microscopy as a quantitative method for investigating tau fibrillization. Anal Biochem 329:238–246

    Article  CAS  PubMed  Google Scholar 

  25. Friedhoff P, von Bergen M, Mandelkow EM, Davies P, Mandelkow E (1998) A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc Natl Acad Sci U S A 95:15712–15717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Zhao D, Moore JS (2003) Nucleation-elongation: a mechanism for cooperative supramolecular polymerization. Org Biomol Chem 1:3471–3491

    Article  CAS  PubMed  Google Scholar 

  27. Pappu RV, Wang X, Vitalis A, Crick SL (2008) A polymer physics perspective on driving forces and mechanisms for protein aggregation. Arch Biochem Biophys 469:132–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ferrone F (1999) Analysis of protein aggregation kinetics. Methods Enzymol 309:256–274

    Article  CAS  PubMed  Google Scholar 

  29. King ME, Ghoshal N, Wall JS, Binder LI, Ksiezak-Reding H (2001) Structural analysis of Pick’s disease-derived and in vitro-assembled tau filaments. Am J Pathol 158:1481–1490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. von Bergen M, Barghorn S, Muller SA, Pickhardt M, Biernat J, Mandelkow EM, Davies P, Aebi U, Mandelkow E (2006) The core of tau-paired helical filaments studied by scanning transmission electron microscopy and limited proteolysis. Biochemistry 45:6446–6457

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grant AG14452. Images presented in this report were generated using an instrument at the Campus Microscopy and Imaging Facility, The Ohio State University, Columbus, OH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Kuret Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Huseby, C.J., Kuret, J. (2016). Analyzing Tau Aggregation with Electron Microscopy. In: Eliezer, D. (eds) Protein Amyloid Aggregation. Methods in Molecular Biology, vol 1345. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2978-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2978-8_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2977-1

  • Online ISBN: 978-1-4939-2978-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics