Skip to main content

Deep UV Resonance Raman Spectroscopy for Characterizing Amyloid Aggregation

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1345))

Abstract

Deep UV resonance Raman spectroscopy is a powerful technique for probing the structure and formation mechanism of protein fibrils, which are traditionally difficult to study with other techniques owing to their low solubility and noncrystalline arrangement. Utilizing a tunable deep UV Raman system allows for selective enhancement of different chromophores in protein fibrils, which provides detailed information on different aspects of the fibrils’ structure and formation. Additional information can be extracted with the use of advanced data treatment such as chemometrics and 2D correlation spectroscopy. In this chapter we give an overview of several techniques for utilizing deep UV resonance Raman spectroscopy to study the structure and mechanism of formation of protein fibrils. Clever use of hydrogen-deuterium exchange can elucidate the structure of the fibril core. Selective enhancement of aromatic amino acid side chains provides information about the local environment and protein tertiary structure. The mechanism of protein fibril formation can be investigated with kinetic experiments and advanced chemometrics.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Xu M, Ermolenkov V, Uversky V et al (2008) Hen egg white lysozyme fibrillation: a deep-UV resonance Raman spectroscopic study. J Biophotonics 1(3):215–229

    Article  CAS  PubMed  Google Scholar 

  2. Lednev I, Shashilov V, Xu M (2009) Ultraviolet Raman spectroscopy is uniquely suitable for studying amyloid diseases. Curr Sci 97(2):180–185

    CAS  Google Scholar 

  3. Kurouski D, Lauro W, Lednev I (2010) Amyloid fibrils are “alive”: spontaneous refolding from one polymorph to another. Chem Commun 46(24):4249–4251. doi:10.1039/b926758a

    Article  CAS  Google Scholar 

  4. Popova L, Kodali R, Wetzel R et al (2010) Structural variations in the cross-beta core of amyloid beta fibrils revealed by deep UV resonance Raman spectroscopy. J Am Chem Soc 132(18):6324–6328

    Article  CAS  PubMed  Google Scholar 

  5. Shashilov V, Xu M, Ermolenkov V et al (2007) Probing a fibrillation nucleus directly by deep ultraviolet Raman spectroscopy. J Am Chem Soc 129(22):6972–6973

    Article  CAS  PubMed  Google Scholar 

  6. Shashilov V, Lednev I (2008) 2D correlation deep UV resonance Raman spectroscopy of early events of lysozyme fibrillation: kinetic mechanism and potential interpretation pitfalls. J Am Chem Soc 130(1):309–317

    Article  CAS  PubMed  Google Scholar 

  7. Shashilov V, Lednev I (2009) Two-dimensional correlation Raman spectroscopy for characterizing protein structure and dynamics. J Raman Spectrosc 40(12):1749–1758

    Article  CAS  Google Scholar 

  8. Shashilov V, Lednev I (2010) Advanced statistical and numerical methods for spectroscopic characterization of protein structural evolution. Chem Rev 110(10):5692–5713

    Article  CAS  PubMed  Google Scholar 

  9. Shashilov V, Sikirzhytski V, Popova L et al (2010) Quantitative methods for structural characterization of proteins based on deep UV resonance Raman spectroscopy. Methods 52(1):23–37

    Article  CAS  PubMed  Google Scholar 

  10. Sikirzhytski V, Topilina N, Higashiya S et al (2008) Genetic engineering combined with deep UV resonance Raman spectroscopy for structural characterization of amyloid-like fibrils. J Am Chem Soc 130(18):5852–5853

    Article  CAS  PubMed  Google Scholar 

  11. Xu M, Shashilov V, Lednev I (2007) Probing the cross-beta core structure of amyloid fibrils by hydrogen-deuterium exchange deep ultraviolet resonance Raman spectroscopy. J Am Chem Soc 129(36):11002–11003. doi:10.1021/ja073798w

    Article  CAS  PubMed  Google Scholar 

  12. Brereton R (2003) Chemometrics: data analysis for the laboratory and chemical plant. Wiley, Chinchester (England)

    Book  Google Scholar 

  13. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4-5):411–430. doi:10.1016/s0893-6080(00)00026-5

    Article  PubMed  Google Scholar 

  14. Hyvärinen A, Karhunen J, Oja E (2002) What is independent component analysis? Wiley, New York, pp 145–164

    Google Scholar 

  15. Shao X, Wang G, Wang S et al (2004) Extraction of mass spectra and chromatographic profiles from overlapping GC/MS signal with background. Anal Chem 76(17):5143–5148. doi:10.1021/ac035521u

    Article  CAS  PubMed  Google Scholar 

  16. Cichocki A, Amari S (2005) Adaptive blind signal and image processing: learning algorithms and applications. Reprinted with corrections. Wiley, New York

    Google Scholar 

  17. Bell A, Sejnowski T (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159. doi:10.1162/neco.1995.7.6.1129

    Article  CAS  PubMed  Google Scholar 

  18. Oladepo S, Xiong K, Hong Z et al (2012) UV resonance Raman investigations of peptide and protein structure and dynamics. Chem Rev 112(5):2604–2628. doi:10.1021/cr200198a

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Huang C, Balakrishnan G, Spiro T (2006) Protein secondary structure from deep-UV resonance Raman spectroscopy. J Raman Spectrosc 37(1–3):277–282. doi:10.1002/jrs.1440

    Article  CAS  Google Scholar 

  20. Chi Z, Asher S (1998) UV Raman determination of the environment and solvent exposure of Tyr and Trp residues. J Phys Chem B 102(47):9595–9602. doi:10.1021/jp9828336

    Article  CAS  Google Scholar 

  21. Balakrishnan G, Hu Y, Oyerinde O et al (2007) A conformational switch to beta-sheet structure in cytochrome c leads to heme exposure. Implications for cardiolipin peroxidation and apoptosis. J Am Chem Soc 129(3):504–505. doi:10.1021/ja0678727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ray G, Copeland R, Lee C et al (1990) Resonance Raman evidence for low-spin iron(2+) heme a3 in energized cytochrome c oxidase: implications for the inhibition of oxygen reduction. Biochemistry 29:3208–3213

    Article  CAS  PubMed  Google Scholar 

  23. Englander S, Sosnick T, Englander J et al (1996) Mechanisms and uses of hydrogen exchange. Curr Opin Struct Biol 6(1):18–23. doi:10.1016/s0959-440x(96)80090-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. DeFlores L, Tokmakoff A (2006) Water penetration into protein secondary structure revealed by hydrogen-deuterium exchange two-dimensional infrared spectroscopy. J Am Chem Soc 128(51):16520–16521. doi:10.1021/ja067723o

    Article  CAS  PubMed  Google Scholar 

  25. Mikhonin A, Asher S (2005) Uncoupled peptide bond vibrations in alpha-helical and polyproline II conformations of polyalanine peptides. J Phys Chem B 109(7):3047–3052. doi:10.1021/jp0460442

    Article  CAS  PubMed  Google Scholar 

  26. Asher S, Ianoul A, Mix G et al (2001) Dihedral psi angle dependence of the amide III vibration: a uniquely sensitive UV resonance Raman secondary structural probe. J Am Chem Soc 123(47):11775–11781

    Article  CAS  PubMed  Google Scholar 

  27. Knuth, K. H. (1998) Bayesian source separation and localization. SPIE, 3459:147–158. doi:10.1117/12.323794

  28. Noda I, Ozaki Y (2004) Two-dimensional correlation spectroscopy: applications in vibrational and optical spectroscopy. Wiley, Chichester

    Book  Google Scholar 

  29. Shanmukh S, Dluhy R (2004) kν Correlation analysis. A quantitative two-dimensional IR correlation method for analysis of rate processes with exponential functions. J Phys Chem A 108(26):5625–5634. doi:10.1021/jp049689a

    Article  CAS  Google Scholar 

  30. Lednev I, Ermolenkov V, He W et al (2005) Deep-UV Raman spectrometer tunable between 193 and 205 nm for structural characterization of proteins. Anal Bioanal Chem 381(2):431–437

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation under Grant No. CHE-1152752 (IKL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor K. Lednev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Handen, J.D., Lednev, I.K. (2016). Deep UV Resonance Raman Spectroscopy for Characterizing Amyloid Aggregation. In: Eliezer, D. (eds) Protein Amyloid Aggregation. Methods in Molecular Biology, vol 1345. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2978-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2978-8_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2977-1

  • Online ISBN: 978-1-4939-2978-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics