Preparation of Crystalline Samples of Amyloid Fibrils and Oligomers

Part of the Methods in Molecular Biology book series (MIMB, volume 1345)


The molecular structures of amyloid fibers and oligomers are required in order to understand and control their formation. Yet, their partially disordered and polymorphic nature hinders structural analyses. Fortunately, short segments from amyloid proteins, which exhibit similar biophysical properties to the full-length proteins, also form fibrils and oligomers and their atomic structures can be determined. Here we describe experimental procedures used to assess fiber-forming capabilities of amyloid peptide segments and their crystallization.

Key words

Microcrystals Amyloid-like peptides Microcrystallography Cross-β spine Steric zipper Cylindrin 



We thank our coworkers for their contributions to development of these methods, and NIH (AG029430 & SG04812), DOE (DE-FC02-02ER63421), and NSF (MCB-0958111) for support. DE and ML thank the U.S.-Israel Binational Science Foundation (BSF). ML thanks the Alon Fellowship from the Israeli Council for Higher Education, the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation, Center of Excellence in Integrated Structural Cell Biology; Grant No 1775/12, the Support for training and career development of researchers (Marie Curie) CIG, Seventh framework program, Single Benefi ciary, the J. and A. Taub Biological Research Fund, and the David and Inez Mayers Career Advancement Chair in Life Sciences.


  1. 1.
    Gazit E (2005) Mechanisms of amyloid fibril self-assembly and inhibition. Model short peptides as a key research tool. FEBS J 272:5971–5978CrossRefPubMedGoogle Scholar
  2. 2.
    Sipe JD, Cohen AS (2000) Review: history of the amyloid fibril. J Struct Biol 130:88–98CrossRefPubMedGoogle Scholar
  3. 3.
    Sunde M, Serpell LC, Bartlam M et al (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739CrossRefPubMedGoogle Scholar
  4. 4.
    Balbirnie M, Grothe R, Eisenberg DS (2001) An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc Natl Acad Sci U S A 98:2375–2380PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Ivanova MI, Thompson MJ, Eisenberg D (2006) A systematic screen of beta(2)-microglobulin and insulin for amyloid-like segments. Proc Natl Acad Sci U S A 103:4079–4082PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Thompson MJ, Sievers SA, Karanicolas J et al (2006) The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A 103:4074–4078PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Nelson R, Sawaya MR, Balbirnie M et al (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Sawaya MR, Sambashivan S, Nelson R et al (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457CrossRefPubMedGoogle Scholar
  9. 9.
    Wiltzius JJ, Sievers SA, Sawaya MR et al (2008) Atomic structure of the cross-beta spine of islet amyloid polypeptide (amylin). Protein Sci 17:1467–1474PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Ivanova MI, Sievers SA, Sawaya MR et al (2009) Molecular basis for insulin fibril assembly. Proc Natl Acad Sci U S A 106:18990–18995PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Wiltzius JJ, Landau M, Nelson R et al (2009) Molecular mechanisms for protein-encoded inheritance. Nat Struct Mol Biol 16:973–978PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Wiltzius JJ, Sievers SA, Sawaya MR et al (2009) Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process. Protein Sci 18:1521–1530PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Laganowsky A, Benesch JL, Landau M et al (2010) Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19:1031–1043PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Apostol MI, Wiltzius JJ, Sawaya MR et al (2011) Atomic structures suggest determinants of transmission barriers in mammalian prion disease. Biochemistry 50:2456–2463PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Colletier JP, Laganowsky A, Landau M et al (2011) Molecular basis for amyloid-beta polymorphism. Proc Natl Acad Sci U S A 108:16938–16943PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Liu C, Zhao M, Jiang L et al (2012) Out-of-register beta-sheets suggest a pathway to toxic amyloid aggregates. Proc Natl Acad Sci U S A 109:20913–20918PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Landau M, Sawaya MR, Faull KF et al (2011) Towards a pharmacophore for amyloid. PLoS Biol 9:e1001080PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Nelson R, Eisenberg D (2006) Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol 16:260–265CrossRefPubMedGoogle Scholar
  19. 19.
    Nelson R, Eisenberg D (2006) Structural models of amyloid-like fibrils. Adv Protein Chem 73:235–282CrossRefPubMedGoogle Scholar
  20. 20.
    Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148:1188–1203PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Laganowsky A, Liu C, Sawaya MR et al (2012) Atomic view of a toxic amyloid small oligomer. Science 335:1228–1231PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Goldschmidt L, Teng PK, Riek R et al (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci U S A 107:3487–3492PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Ivanova MI, Sievers SA, Guenther EL et al (2014) Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS. Proc Natl Acad Sci U S A 111:197–201PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Fernandez-Escamilla AM, Rousseau F, Schymkowitz J et al (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302–1306CrossRefPubMedGoogle Scholar
  25. 25.
    Maurer-Stroh S, Debulpaep M, Kuemmerer N et al (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods 7:237–242CrossRefPubMedGoogle Scholar
  26. 26.
    Tartaglia GG, Pawar AP, Campioni S et al (2008) Prediction of aggregation-prone regions in structured proteins. J Mol Biol 380:425–436CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of BiologyTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of Biological Chemistry, Howard Hughes Medical Institute (HHMI)University of California Los Angeles (UCLA)Los AngelesUSA

Personalised recommendations