Skip to main content

Role of TGF-β Signaling in Coupling Bone Remodeling

  • Protocol
TGF-β Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1344))

Abstract

TGF-β signaling plays a key role in the temporal and spatial regulation of bone remodeling. During osteoclast bone resorption, TGF-β is released from the bone matrix and activated. Active TGF-β recruits mesenchymal stem cells to the bone resorption pit through the SMAD signaling pathway. Mesenchymal stem cells undergo osteoblast differentiation and deposit new bone filling in the resorption pit and maintaining the structural integrity of the skeleton. Thus, TGF-β signaling plays a key role in the coupling process and disruptions to the TGF-β signaling pathway lead to loss of skeletal integrity. This chapter describes methods on how to quantitate bone matrix TGF-β and assess its role in mesenchymal stem cell migration both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hill PA (1998) Bone remodelling. Br J Orthod 25:101–107

    Article  CAS  PubMed  Google Scholar 

  2. Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13:791–801

    Article  CAS  PubMed  Google Scholar 

  3. Tuan RS (2003) Cellular signaling in developmental chondrogenesis: N-cadherin, Wnts, and BMP-2. J Bone Joint Surg Am 85-A(Suppl 2):137–141

    PubMed  Google Scholar 

  4. Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406

    Article  CAS  PubMed  Google Scholar 

  5. Oreffo RO, Mundy GR, Seyedin SM, Bonewald LF (1989) Activation of the bone-derived latent TGF beta complex by isolated osteoclasts. Biochem Biophys Res Commun 158:817–823

    Article  CAS  PubMed  Google Scholar 

  6. Mundy GR (1994) Peptides and growth regulatory factors in bone. Rheum Dis Clin North Am 20:577–588

    CAS  PubMed  Google Scholar 

  7. Martin TJ, Allan EH, Fukumoto S (1993) The plasminogen activator and inhibitor system in bone remodelling. Growth Regul 3:209–214

    CAS  PubMed  Google Scholar 

  8. Pfeilschifter J, Wolf O, Naumann A et al (1990) Chemotactic response of osteoblastlike cells to transforming growth factor beta. J Bone Miner Res 5:825–830

    Article  CAS  PubMed  Google Scholar 

  9. Hill PA, Tumber A, Meikle MC (1997) Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology 138:3849–3858

    CAS  PubMed  Google Scholar 

  10. Tang Y, Wu X, Lei W et al (2009) TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15:757–765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Dallas SL, Park-Snyder S, Miyazono K et al (1994) Characterization and autoregulation of latent transforming growth factor beta (TGF beta) complexes in osteoblast-like cell lines. Production of a latent complex lacking the latent TGF beta-binding protein. J Biol Chem 269:6815–6821

    CAS  PubMed  Google Scholar 

  12. Gentry LE, Lioubin MN, Purchio AF, Marquardt H (1988) Molecular events in the processing of recombinant type 1 pre-pro-transforming growth factor beta to the mature polypeptide. Mol Cell Biol 8:4162–4168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Pfeilschifter J, Bonewald L, Mundy GR (1990) Characterization of the latent transforming growth factor beta complex in bone. J Bone Miner Res 5:49–58

    Article  CAS  PubMed  Google Scholar 

  14. Pedrozo HA, Schwartz Z, Robinson M et al (1999) Potential mechanisms for the plasmin-mediated release and activation of latent transforming growth factor-beta1 from the extracellular matrix of growth plate chondrocytes. Endocrinology 140:5806–5816

    CAS  PubMed  Google Scholar 

  15. Bismar H, Kloppinger T, Schuster EM et al (1999) Transforming growth factor beta (TGF-beta) levels in the conditioned media of human bone cells: relationship to donor age, bone volume, and concentration of TGF-beta in human bone matrix in vivo. Bone 24:565–569

    Article  CAS  PubMed  Google Scholar 

  16. Roberts AB, Frolik CA, Anzano MA, Sporn MB (1983) Transforming growth factors from neoplastic and nonneoplastic tissues. Fed Proc 42:2621–2626

    CAS  PubMed  Google Scholar 

  17. Seyedin SM, Thomas TC, Thompson AY et al (1985) Purification and characterization of two cartilage-inducing factors from bovine demineralized bone. Proc Natl Acad Sci U S A 82:2267–2271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Dallas SL, Rosser JL, Mundy GR, Bonewald LF (2002) Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J Biol Chem 277:21352–21360

    Article  CAS  PubMed  Google Scholar 

  19. Zwijsen A, Verschueren K, Huylebroeck D (2003) New intracellular components of bone morphogenetic protein/Smad signaling cascades. FEBS Lett 546:133–139

    Article  CAS  PubMed  Google Scholar 

  20. Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    Article  CAS  PubMed  Google Scholar 

  21. Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296:1646–1647

    Article  CAS  PubMed  Google Scholar 

  22. Kretzschmar M, Massague J (1998) SMADs: mediators and regulators of TGF-beta signaling. Curr Opin Genet Dev 8:103–111

    Article  CAS  PubMed  Google Scholar 

  23. Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471

    Article  CAS  PubMed  Google Scholar 

  24. Miyazono K (2000) Positive and negative regulation of TGF-beta signaling. J Cell Sci 113(Pt 7):1101–1109

    CAS  PubMed  Google Scholar 

  25. Derynck R (1994) TGF-beta-receptor-mediated signaling. Trends Biochem Sci 19:548–553

    Article  CAS  PubMed  Google Scholar 

  26. Cohen PT (2002) Protein phosphatase 1 – targeted in many directions. J Cell Sci 115:241–256

    CAS  PubMed  Google Scholar 

  27. Fujii M, Takeda K, Imamura T et al (1999) Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation. Mol Biol Cell 10:3801–3813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ten DP, Korchynskyi O, Valdimarsdottir G, Goumans MJ (2003) Controlling cell fate by bone morphogenetic protein receptors. Mol Cell Endocrinol 211:105–113

    Article  Google Scholar 

  29. Hanyu A, Ishidou Y, Ebisawa T et al (2001) The N domain of Smad7 is essential for specific inhibition of transforming growth factor-beta signaling. J Cell Biol 155:1017–1027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Imamura T, Takase M, Nishihara A et al (1997) Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389:622–626

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Cao Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Crane, J.L., Xian, L., Cao, X. (2016). Role of TGF-β Signaling in Coupling Bone Remodeling. In: Feng, XH., Xu, P., Lin, X. (eds) TGF-β Signaling. Methods in Molecular Biology, vol 1344. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2966-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2966-5_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2965-8

  • Online ISBN: 978-1-4939-2966-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics