Skip to main content

Model Organisms for Studying the Cell Cycle

  • Protocol
Cell Cycle Oscillators

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1342))

Abstract

Regulation of the cell-division cycle is fundamental for the growth, development, and reproduction of all species of life. In the past several decades, a conserved theme of cell cycle regulation has emerged from research in diverse model organisms. A comparison of distinct features of several diverse model organisms commonly used in cell cycle studies highlights their suitability for various experimental approaches, and recaptures their contributions to our current understanding of the eukaryotic cell cycle. A historic perspective presents a recollection of the breakthrough upon unfolding the universal principles of cell cycle control by scientists working with diverse model organisms, thereby appreciating the discovery pathways in this field.

A comprehensive understanding is necessary to address current challenging questions about cell cycle control. Advances in genomics, proteomics, quantitative methodologies, and approaches of systems biology are redefining the traditional concept of what constitutes a model organism and have established a new era for development of novel, and refinement of the established model organisms. Researchers working in the field are no longer separated by their favorite model organisms; they have become more integrated into a larger community for gaining greater insights into how a cell divides and cycles. The new technologies provide a broad evolutionary spectrum of the cell-division cycle and allow informative comparisons among different species at a level that has never been possible, exerting unimaginable impact on our comprehensive understanding of cell cycle regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838–849

    Article  CAS  PubMed  Google Scholar 

  2. Rine J (2014) A future of the model organism model. Mol Biol Cell 25:549–553

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kirschner M (1992) The cell cycle then and now. Trends Biochem Sci 17:281–285

    Article  CAS  PubMed  Google Scholar 

  4. Nurse P (2000) A long twentieth century of the cell cycle and beyond. Cell 100:71–78

    Article  CAS  PubMed  Google Scholar 

  5. Murray A, Hunt T (1993) The cell cycle: an introduction. Oxford University Press, New York, NY

    Google Scholar 

  6. Morgan DO (2007) The cell cycle: principles of control. New Science Press Ltd, London

    Google Scholar 

  7. Mukherjee S (2011) The emperor of all maladies: a biography of cancer. Scribner, New York, NY

    Google Scholar 

  8. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, Vitale L, Pelleri MC, Tassani S, Piva F, Perez-Amodio S, Strippoli P, Canaider S (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40:463–471

    Article  PubMed  Google Scholar 

  9. Fischbach GD, Fischbach RL (2004) Stem cells: science, policy, and ethics. J Clin Invest 114:1364–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1:39–49

    Article  CAS  PubMed  Google Scholar 

  11. Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96:245–254

    Article  CAS  PubMed  Google Scholar 

  12. Zimmer C (2007) Evolved for cancer? Sci Am 296:68–74, 75A

    Article  PubMed  Google Scholar 

  13. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell. Garland Science, New York, NY

    Google Scholar 

  14. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274(546):563–567

    Google Scholar 

  15. Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O’Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schafer M, Muller-Auer S, Gabel C, Fuchs M, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dreano S, Gloux S, Lelaure V et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    Article  CAS  PubMed  Google Scholar 

  16. Kim DU, Hayles J, Kim D, Wood V, Park HO, Won M, Yoo HS, Duhig T, Nam M, Palmer G, Han S, Jeffery L, Baek ST, Lee H, Shim YS, Lee M, Kim L, Heo KS, Noh EJ, Lee AR, Jang YJ, Chung KS, Choi SJ, Park JY, Park Y, Kim HM, Park SK, Park HJ, Kang EJ, Kim HB, Kang HS, Park HM, Kim K, Song K, Song KB, Nurse P, Hoe KL (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28:617–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, Chua G, Sopko R, Brost RL, Ho CH, Wang J, Ketela T, Brenner C, Brill JA, Fernandez GE, Lorenz TC, Payne GS, Ishihara S, Ohya Y, Andrews B, Hughes TR, Frey BJ, Graham TR, Andersen RJ, Boone C (2006) Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126:611–625

    Article  CAS  PubMed  Google Scholar 

  18. Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St Onge RP, Tyers M, Koller D, Altman RB, Davis RW, Nislow C, Giaever G (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320:362–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoon S, St Onge RP, Giaever G, Nislow C (2008) Yeast chemical genomics and drug discovery: an update. Trends Pharmacol Sci 29:499–504

    Article  CAS  PubMed  Google Scholar 

  20. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pal C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C (2010) The genetic landscape of a cell. Science 327:425–431

    Article  CAS  PubMed  Google Scholar 

  21. White SA, Allshire RC (2008) RNAi-mediated chromatin silencing in fission yeast. Curr Top Microbiol Immunol 320:157–183

    CAS  PubMed  Google Scholar 

  22. Forsburg SL, Rhind N (2006) Basic methods for fission yeast. Yeast 23:173–183

    Article  CAS  PubMed  Google Scholar 

  23. Lee MG, Nurse P (1987) Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327:31–35

    Article  CAS  PubMed  Google Scholar 

  24. Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st century biology. Genetics 189:695–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. MacNeill SA, Nurse P (1997) The molecular and cellular biology of the yeast saccharomyces. Cold Spring Harbor Laboratory Press, New York, NY

    Google Scholar 

  26. Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503–508

    Article  CAS  PubMed  Google Scholar 

  27. Botstein D, Chervitz SA, Cherry JM (1997) Yeast as a model organism. Science 277:1259–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Melese T, Hieter P (2002) From genetics and genomics to drug discovery: yeast rises to the challenge. Trends Pharmacol Sci 23:544–547

    Article  CAS  PubMed  Google Scholar 

  29. Roguev A, Wiren M, Weissman JS, Krogan NJ, Roguev A, Krogan NJ (2007) High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe SIN-fully silent: HDAC complexes in fission yeast. Nat Methods 4:861–866, Epub 2007 Sep 23

    Article  CAS  PubMed  Google Scholar 

  30. Alfa C, Fantes P, Hyams J, McLeod M, Warbrick E (1993) Experiments with fission yeast, a laboratory course manual. Cold Spring Harbor Laboratory Press, New York, NY

    Google Scholar 

  31. Forsburg SL (2001) The art and design of genetic screens: yeast. Nat Rev Genet 2:659–668

    Article  CAS  PubMed  Google Scholar 

  32. Lee MG, Nurse P (1987) Cell cycle genes of the fission yeast. Sci Prog 71:1–14

    CAS  PubMed  Google Scholar 

  33. Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  CAS  PubMed  Google Scholar 

  34. Hartwell LH, Culotti J, Pringle JR, Reid BJ (1974) Genetic control of the cell division cycle in yeast. Science 183:46–51

    Article  CAS  PubMed  Google Scholar 

  35. Hartwell LH, Mortimer RK, Culotti J, Culotti M (1973) Genetic control of the cell division cycle in yeast: v. genetic analysis of cdc mutants. Genetics 74:267–286

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nurse P, Thuriaux P, Nasmyth K (1976) Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 146:167–178

    Article  CAS  PubMed  Google Scholar 

  37. Sullivan W (1993) The salvation of doug. Generations (Genet Soc Am) 1:3

    Google Scholar 

  38. Russell P, Nurse P (1987) Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 49:559–567

    Article  CAS  PubMed  Google Scholar 

  39. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rustici G, Mata J, Kivinen K, Lio P, Penkett CJ, Burns G, Hayles J, Brazma A, Nurse P, Bahler J (2004) Periodic gene expression program of the fission yeast cell cycle. Nat Genet 36:809–817

    Article  CAS  PubMed  Google Scholar 

  41. Neumann B, Walter T, Heriche JK, Bulkescher J, Erfle H, Conrad C, Rogers P, Poser I, Held M, Liebel U, Cetin C, Sieckmann F, Pau G, Kabbe R, Wunsche A, Satagopam V, Schmitz MH, Chapuis C, Gerlich DW, Schneider R, Eils R, Huber W, Peters JM, Hyman AA, Durbin R, Pepperkok R, Ellenberg J (2010) Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464:721–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Russell P, Nurse P (1986) cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45:145–153

    Article  CAS  PubMed  Google Scholar 

  43. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634

    Article  CAS  PubMed  Google Scholar 

  44. Beach D, Durkacz B, Nurse P (1982) Functionally homologous cell cycle control genes in budding and fission yeast. Nature 300:706–709

    Article  CAS  PubMed  Google Scholar 

  45. Simanis V, Nurse P (1986) The cell cycle control gene cdc2+ of fission yeast encodes a protein kinase potentially regulated by phosphorylation. Cell 45:261–268

    Article  CAS  PubMed  Google Scholar 

  46. Draetta G, Brizuela L, Potashkin J, Beach D (1987) Identification of p34 and p13, human homologs of the cell cycle regulators of fission yeast encoded by cdc2+ and suc1+. Cell 50:319–325

    Article  CAS  PubMed  Google Scholar 

  47. Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177:129–145

    Article  CAS  PubMed  Google Scholar 

  48. Johnson RT, Rao PN, Hughes HD (1970) Mammalian cell fusion. 3. A HeLa cell inducer of premature chromosome condensation active in cells from a variety of animal species. J Cell Physiol 76:151–157

    Article  CAS  PubMed  Google Scholar 

  49. Gerhart J, Wu M, Kirschner M (1984) Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J Cell Biol 98:1247–1255

    Article  CAS  PubMed  Google Scholar 

  50. Newport JW, Kirschner MW (1984) Regulation of the cell cycle during early Xenopus development. Cell 37:731–742

    Article  CAS  PubMed  Google Scholar 

  51. Sunkara PS, Wright DA, Rao PN (1979) Mitotic factors from mammalian cells: a preliminary characterization. J Supramol Struct 11:189–195

    Article  CAS  PubMed  Google Scholar 

  52. Kishimoto T, Kuriyama R, Kondo H, Kanatani H (1982) Generality of the action of various maturation-promoting factors. Exp Cell Res 137:121–126

    Article  CAS  PubMed  Google Scholar 

  53. Tachibana K, Yanagishima N, Kishimoto T (1987) Preliminary characterization of maturation-promoting factor from yeast Saccharomyces cerevisiae. J Cell Sci 88(Pt 3):273–281

    CAS  PubMed  Google Scholar 

  54. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396

    Article  CAS  PubMed  Google Scholar 

  55. Lohka MJ, Masui Y (1983) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220:719–721

    Article  CAS  PubMed  Google Scholar 

  56. Lohka MJ, Hayes MK, Maller JL (1988) Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc Natl Acad Sci U S A 85:3009–3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Murray AW, Kirschner MW (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339:275–280

    Article  CAS  PubMed  Google Scholar 

  58. Dunphy WG, Brizuela L, Beach D, Newport J (1988) The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54:423–431

    Article  CAS  PubMed  Google Scholar 

  59. Edgar BA, Lehner CF (1996) Developmental control of cell cycle regulators: a fly’s perspective. Science 274:1646–1652

    Article  CAS  PubMed  Google Scholar 

  60. Lee LA, O-W TL (2003) Regulation of cell cycles in Drosophila development: intrinsic and extrinsic cues. Annu Rev Genet 37:545–578

    Article  CAS  PubMed  Google Scholar 

  61. Todaro GJ, Green H (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17:299–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ramirez RD, Morales CP, Herbert BS, Rohde JM, Passons C, Shay JW, Wright WE (2001) Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev 15:398–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Land H, Parada LF, Weinberg RA (1983) Cellular oncogenes and multistep carcinogenesis. Science 222:771–778

    Article  CAS  PubMed  Google Scholar 

  64. Novina CD, Sharp PA (2004) The RNAi revolution. Nature 430:161–164

    Article  CAS  PubMed  Google Scholar 

  65. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sioud M (2011) Promises and challenges in developing RNAi as a research tool and therapy. Methods Mol Biol 703:173–187

    Article  CAS  PubMed  Google Scholar 

  67. Nurse P, Hayles J (2011) The cell in an era of systems biology. Cell 144:850–854

    Article  CAS  PubMed  Google Scholar 

  68. Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP, Morgan DO (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325:1682–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Koivomagi M, Valk E, Venta R, Iofik A, Lepiku M, Morgan DO, Loog M (2011) Dynamics of Cdk1 substrate specificity during the cell cycle. Mol Cell 42:610–623

    Article  PubMed  PubMed Central  Google Scholar 

  70. Allen NA, Chen KC, Shaffer CA, Tyson JJ, Watson LT (2006) Computer evaluation of network dynamics models with application to cell cycle control in budding yeast. Syst Biol 153:13–21

    Article  CAS  Google Scholar 

  71. Brazhnik P, Tyson JJ (2006) Cell cycle control in bacteria and yeast: a case of convergent evolution? Cell Cycle 5:522–529

    Article  CAS  PubMed  Google Scholar 

  72. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  PubMed  Google Scholar 

  73. Hudson A et al (2009) Emerging model organisms: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, NY

    Google Scholar 

  74. Brenner S, Elgar G, Sandford R, Macrae A, Venkatesh B, Aparicio S (1993) Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366:265–268

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

I thank my colleagues at Keck Science Department, Claremont Colleges, CA, Dr. Gretchen Edwalds-Gilbert for providing an image of budding yeast S. cerevisiae; Dr. Bryan Thines and Dr. Babak Sanii for reading and the feedback on the manuscript. I also thank Dr. Louise Weston for editing and the feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohua Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tang, Z. (2016). Model Organisms for Studying the Cell Cycle. In: Coutts, A., Weston, L. (eds) Cell Cycle Oscillators. Methods in Molecular Biology, vol 1342. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2957-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2957-3_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2956-6

  • Online ISBN: 978-1-4939-2957-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics