Skip to main content

Measuring Activity and Specificity of Protein Phosphatases

  • Protocol
Cell Cycle Oscillators

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1342))

Abstract

Reversible protein phosphorylation plays essential roles in coordinating cell division and many other biological processes. Cell cycle regulation by opposing kinase and protein phosphatase activities is often complex and major challenges exist in identifying the direct substrates of these enzymes and the specific sites at which they act. While cell cycle kinases are known to exhibit strict substrate specificities important for coordinating the complex events of cell division, phosphatases have only recently been recognized to exert similarly precise regulatory control over cell cycle events through timely dephosphorylation of specific substrates. The molecular determinants for substrate recognition by many phosphatases that function in cell division are still poorly delineated. To understand phosphatase specificity, it is critical to employ methods that monitor the dephosphorylation of individual phosphorylation sites on physiologically relevant substrates. Here, using the cell cycle phosphatase Cdc14 as an example, we describe two methods for studying phosphatase specificity, one using synthetic phosphopeptide substrates and the other using intact phosphoprotein substrates. These methods are useful for targeted characterization of small substrate sets and are also adaptable to large-scale applications for global specificity studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brautigan DL (2013) Protein Ser/Thr phosphatases—the ugly ducklings of cell signalling. FEBS J 280:324–345

    Article  CAS  PubMed  Google Scholar 

  2. Bollen M, Gerlich D, Lesage B (2009) Mitotic phosphatases: from entry guards to exit guides. Trends Cell Biol 19:531–541

    Article  CAS  PubMed  Google Scholar 

  3. Trinkle-Mulcahy L, Lamond A (2006) Mitotic phosphatases: no longer silent partners. Curr Opin Cell Biol 18:623–631

    Article  CAS  PubMed  Google Scholar 

  4. Virshup DM, Shenolikar S (2009) From promiscuity to precision: protein phosphatases get a makeover. Mol Cell 33:537–545

    Article  CAS  PubMed  Google Scholar 

  5. Wurzenberger C, Gerlich DW (2011) Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol 12:469–482

    Article  CAS  PubMed  Google Scholar 

  6. Fisher D, Krasinska L, Coudreuse D et al (2012) Phosphorylation network dynamics in the control of cell cycle transitions. J Cell Sci 125:4703–4711

    Article  CAS  PubMed  Google Scholar 

  7. Olsen JV, Vermeulen M, Santamaria A et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3:ra3

    Article  PubMed  Google Scholar 

  8. Hardie DG (1999) Protein phosphorylation: a practical approach. Oxford University Press, London

    Google Scholar 

  9. Moorhead G (2007) Protein phosphatase protocols. Humana Press, Totowa, NJ

    Google Scholar 

  10. Zhou B, Zhang Z-Y (2003) Measuring protein phosphatase activity with physiological substrates. Methods Enzymol 366:34–43

    Article  CAS  PubMed  Google Scholar 

  11. Geladopoulos TP, Sotiroudis TG, Evangelopoulos AE (1991) A malachite green colorimetric assay for protein phosphatase activity. Anal Biochem 192:112–116

    Article  CAS  PubMed  Google Scholar 

  12. Sheng Z, Charbonneau H (1993) The baculovirus Autographa californica encodes a protein tyrosine phosphatase. J Biol Chem 268:4728–4733

    CAS  PubMed  Google Scholar 

  13. Taylor GS, Liu Y, Baskerville C et al (1997) The activity of Cdc14p, an oligomeric dual specificity protein phosphatase from Saccharomyces cerevisiae, is required for cell cycle progression. J Biol Chem 272:24054–24063

    Article  CAS  PubMed  Google Scholar 

  14. Bremmer SC, Hall H, Martinez JS et al (2012) Cdc14 phosphatases preferentially dephosphorylate a subset of cyclin-dependent kinase (Cdk) sites containing phosphoserine. J Biol Chem 287:1662–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clifford DM, Chen CT, Roberts RH et al (2008) The role of Cdc14 phosphatases in the control of cell division. Biochem Soc Trans 36:436–438

    Article  CAS  PubMed  Google Scholar 

  16. Mocciaro A, Schiebel E (2010) Cdc14: a highly conserved family of phosphatases with non-conserved functions? J Cell Sci 123:2867–2876

    Article  CAS  PubMed  Google Scholar 

  17. Stegmeier F, Amon A (2004) Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu Rev Genet 38:203–232

    Article  CAS  PubMed  Google Scholar 

  18. Eissler CL, Mazon G, Powers BL et al (2014) The Cdk/Cdc14 module controls activation of the Yen1 holliday junction resolvase to promote genome stability. Mol Cell 54:80–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chin CF, Bennett AM, Ma WK et al (2012) Dependence of Chs2 ER export on dephosphorylation by cytoplasmic Cdc14 ensures that septum formation follows mitosis. Mol Biol Cell 23:45–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buss JE, Stull JT (1983) Measurement of chemical phosphate in proteins. Methods Enzymol 99:7–14

    Article  CAS  PubMed  Google Scholar 

  21. Eissler CL, Bremmer SC, Martinez JS et al (2011) A general strategy for studying multisite protein phosphorylation using label-free selected reaction monitoring mass spectrometry. Anal Biochem 418:267–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shevchenko A, Tomas H, Havlis J et al (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  PubMed  Google Scholar 

  23. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  24. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark C. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Powers, B.L., Melesse, M., Eissler, C.L., Charbonneau, H., Hall, M.C. (2016). Measuring Activity and Specificity of Protein Phosphatases. In: Coutts, A., Weston, L. (eds) Cell Cycle Oscillators. Methods in Molecular Biology, vol 1342. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2957-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2957-3_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2956-6

  • Online ISBN: 978-1-4939-2957-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics