Skip to main content

DREADD’ed Addiction: Using Designer Receptors to Delineate Neural Circuits Underlying Drug-Seeking Behaviors

  • Protocol
Designer Receptors Exclusively Activated by Designer Drugs

Part of the book series: Neuromethods ((NM,volume 108))

Abstract

One of the important problems in the treatment of addiction is the vulnerability of previously addicted individuals to relapse to drug use months or even years after abstinence. Longitudinal, retrospective, and laboratory studies suggest that important factors in drug relapse are exposure to cues previously associated with the reinforcer, exposure to small amounts of the reinforcer itself, or exposure to stressful situations. Thus, studying the neuronal circuitry underlying relapse is critical for the development of effective treatments for addiction. Though studies of relapse to drug seeking using experimental animals, primarily rodents, have provided invaluable information on the neurobiological basis of relapse, the precise neurochemical events that contribute to the various forms of relapse are still not completely understood. Furthermore, treatments available to treat relapse to drug addiction are almost non-existent, suggesting that significant efforts need to be concentrated in delineating the role of distinct neural circuits and cell types within these circuits in the mechanisms underlying drug relapse. In the recent years, much research has been directed at identifying and validating sophisticated new technologies that allow investigators to modulate the activity of specific neurons within a brain region or a neural circuit with unprecedented precision. Here, we describe methods based upon recent advances in molecular biology techniques, using the Designer Receptor Exclusively Activated by Designer Drug (DREADD) technology to identify the role of modulation of neuronal activity within a brain region and in discrete neural circuits during complex behavioral tasks. These techniques will serve as valuable tools not only to parse out the neural circuitry that underlies addictive behaviors, but will also be useful to the neuroscience community in understanding the biological bases of other neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Brien CP (1997) Progress in the science of addiction. Am J Psychiatry 154:1195–1197

    Article  PubMed  Google Scholar 

  2. de Wit H (1998) Individual differences in acute effects of drugs in humans: their relevance to risk for abuse. NIDA Res Monogr 169:176–187

    PubMed  Google Scholar 

  3. O’Brien CP, Childress AR, McLellan AT, Ehrman R (1992) Classical conditioning in drug-dependent humans. Ann N Y Acad Sci 654:400–415

    Article  PubMed  Google Scholar 

  4. Sinha R, Fuse T, Aubin LR, O’Malley SS (2000) Psychological stress, drug-related cues and cocaine craving. Psychopharmacology (Berl) 152:140–148

    Article  CAS  Google Scholar 

  5. Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl) 168:3–20

    Article  CAS  Google Scholar 

  6. Stretch R, Gerber GJ (1973) Drug-induced reinstatement of amphetamine self-administration behaviour in monkeys. Can J Psychol 27:168–177

    Article  CAS  PubMed  Google Scholar 

  7. Davis WM, Smith SG (1976) Role of conditioned reinforcers in the initiation, maintenance and extinction of drug-seeking behavior. Pavlov J Biol Sci 11:222–236

    CAS  PubMed  Google Scholar 

  8. Shaham Y, Stewart J (1995) Stress reinstates heroin-seeking in drug-free animals: an effect mimicking heroin, not withdrawal. Psychopharmacology (Berl) 119:334–341

    Article  CAS  Google Scholar 

  9. Shalev U, Grimm JW, Shaham Y (2002) Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 54:1–42

    Article  CAS  PubMed  Google Scholar 

  10. Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L, Deisseroth K (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5:439–456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    Article  CAS  PubMed  Google Scholar 

  12. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104:5163–5168

    Article  PubMed Central  PubMed  Google Scholar 

  13. Rogan SC, Roth BL (2011) Remote control of neuronal signaling. Pharmacol Rev 63:291–315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Mahler SV, Vazey EM, Beckley JT, Keistler CR, McGlinchey EM, Kaufling J, Wilson SP, Deisseroth K, Woodward JJ, Aston-Jones G (2014) Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 17:577–585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Stachniak TJ, Ghosh A, Sternson SM (2014) Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus → midbrain pathway for feeding behavior. Neuron 82:797–808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Farrell MS, Pei Y, Wan Y, Yadav PN, Daigle TL, Urban DJ, Lee HM, Sciaky N, Simmons A, Nonneman RJ, Huang XP, Hufeisen SJ, Guettier JM, Moy SS, Wess J, Caron MG, Calakos N, Roth BL (2013) A Galphas DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology 38:854–862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Guettier JM, Gautam D, Scarselli M, Ruiz de Azua I, Li JH, Rosemond E, Ma X, Gonzalez FJ, Armbruster BN, Lu H, Roth BL, Wess J (2009) A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A 106:19197–19202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Adamantidis AR, Tsai HC, Boutrel B, Zhang F, Stuber GD, Budygin EA, Tourino C, Bonci A, Deisseroth K, de Lecea L (2011) Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci 31:10829–10835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Stuber GD, Sparta DR, Stamatakis AM, van Leeuwen WA, Hardjoprajitno JE, Cho S, Tye KM, Kempadoo KA, Zhang F, Deisseroth K, Bonci A (2011) Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475:377–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ferguson SM, Phillips PE, Roth BL, Wess J, Neumaier JF (2013) Direct-pathway striatal neurons regulate the retention of decision-making strategies. J Neurosci 33:11668–11676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Bull C, Freitas KC, Zou S, Poland RS, Syed WA, Urban DJ, Minter SC, Shelton KL, Hauser KF, Negus SS, Knapp PE, Bowers MS (2014) Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence. Neuropsychopharmacology 39:2835–2845

    Article  CAS  PubMed  Google Scholar 

  22. Ferguson SM, Eskenazi D, Ishikawa M, Wanat MJ, Phillips PE, Dong Y, Roth BL, Neumaier JF (2011) Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat Neurosci 14:22–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Clark MS, Sexton TJ, McClain M, Root D, Kohen R, Neumaier JF (2002) Overexpression of 5-HT1B receptor in dorsal raphe nucleus using Herpes Simplex Virus gene transfer increases anxiety behavior after inescapable stress. J Neurosci 22:4550–4562

    CAS  PubMed  Google Scholar 

  24. Neumaier JF, Edwards E, Plotsky PM (2002) 5-HT(1B) mrna regulation in two animal models of altered stress reactivity. Biol Psychiatry 51:902–908

    Article  CAS  PubMed  Google Scholar 

  25. Aschauer DF, Kreuz S, Rumpel S (2013) Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8, e76310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Chen C, Akerstrom V, Baus J, Lan MS, Breslin MB (2013) Comparative analysis of the transduction efficiency of five adeno associated virus serotypes and VSV-G pseudotype lentiviral vector in lung cancer cells. Virol J 10:86

    Article  PubMed Central  PubMed  Google Scholar 

  27. Holehonnur R, Luong JA, Chaturvedi D, Ho A, Lella SK, Hosek MP, Ploski JE (2014) Adeno-associated viral serotypes produce differing titers and differentially transduce neurons within the rat basal and lateral amygdala. BMC Neurosci 15:28

    Article  PubMed Central  PubMed  Google Scholar 

  28. Dirren E, Towne CL, Setola V, Redmond DE Jr, Schneider BL, Aebischer P (2014) Intracerebroventricular injection of adeno-associated virus 6 and 9 vectors for cell type-specific transgene expression in the spinal cord. Hum Gene Ther 25:109–120

    Article  CAS  PubMed  Google Scholar 

  29. Barot SK, Ferguson SM, Neumaier JF (2007) 5-HT(1B) receptors in nucleus accumbens efferents enhance both rewarding and aversive effects of cocaine. Eur J Neurosci 25:3125–3131

    Article  PubMed  Google Scholar 

  30. Nair SG, Strand NS, Neumaier JF (2013) DREADDing the lateral habenula: a review of methodological approaches for studying lateral habenula function. Brain Res 1511:93–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Nair SG, Smirov D, Neumaier JF (2014) DREADD’ed addiction: Investigating the effect of DREADD-mediated modulation of G-protein coupled signaling in lateral habenula neurons projecting to the ventral tegmental area on cocaine self-administration and reinstatement. Society for Neuroscience Abstract 233.09/W32

    Google Scholar 

  32. Atasoy D, Aponte Y, Su HH, Sternson SM (2008) A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28:7025–7030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kremer EJ, Boutin S, Chillon M, Danos O (2000) Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J Virol 74:505–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Boender AJ, de Jong JW, Boekhoudt L, Luijendijk MC, van der Plasse G, Adan RA (2014) Combined use of the canine adenovirus-2 and DREADD-technology to activate specific neural pathways in vivo. PLoS One 9, e95392

    Article  PubMed Central  PubMed  Google Scholar 

  35. Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121:1424–1428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Nair SG, Furay AR, Liu Y, Neumaier JF (2013) Differential effect of viral overexpression of nucleus accumbens shell 5-HT1B receptors on stress- and cocaine priming-induced reinstatement of cocaine seeking. Pharmacol Biochem Behav 112:89–95

    Article  CAS  PubMed  Google Scholar 

  37. Roberts DC, Morgan D, Liu Y (2007) How to make a rat addicted to cocaine. Prog Neuropsychopharmacol Biol Psychiatry 31:1614–1624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Morgan D, Liu Y, Oleson EB, Roberts DC (2009) Cocaine self-administration on a hold-down schedule of reinforcement in rats. Psychopharmacology (Berl) 201:601–609

    Article  CAS  Google Scholar 

  39. Shaham Y, Funk D, Erb S, Brown TJ, Walker CD, Stewart J (1997) Corticotropin-releasing factor, but not corticosterone, is involved in stress-induced relapse to heroin-seeking in rats. J Neurosci 17:2605–2614

    CAS  PubMed  Google Scholar 

  40. Nair SG, Adams-Deutsch T, Epstein DH, Shaham Y (2009) The neuropharmacology of relapse to food seeking: methodology, main findings, and comparison with relapse to drug seeking. Prog Neurobiol 89:18–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Nair SG, Navarre BM, Cifani C, Pickens CL, Bossert JM, Shaham Y (2011) Role of dorsal medial prefrontal cortex dopamine D1-family receptors in relapse to high-fat food seeking induced by the anxiogenic drug yohimbine. Neuropsychopharmacology 36:497–510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Nair SG, Smirnov D, Neumaier JF (2013) Effect of DREADD-mediated modulation of G-protein coupled signaling in the lateral habenula on cocaine reinforced operant responding. Society for Neuroscience Abstract 733.10/FF2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Neumaier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nair, S.G., Smirnov, D., Neumaier, J.F. (2015). DREADD’ed Addiction: Using Designer Receptors to Delineate Neural Circuits Underlying Drug-Seeking Behaviors. In: Thiel, G. (eds) Designer Receptors Exclusively Activated by Designer Drugs. Neuromethods, vol 108. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2944-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2944-3_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2943-6

  • Online ISBN: 978-1-4939-2944-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics