Advertisement

Recollection of How We Came Across the Protein Modification with Amino Acids by Aminoacyl tRNA-Protein Transferase

  • Hideko KajiEmail author
  • Akira KajiEmail author
Protocol
  • 1.5k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1337)

Abstract

Protein arginylation has been discovered in 1963 as a soluble activity in cell extracts that mediates addition of amino acids to proteins. This discovery was nearly accidental, but due to the persistence of the research team, it has been followed through and led to the emergence of a new field of research. This chapter describes the original discovery of arginylation and the first methods used to demonstrate the existence of this important biological process.

Key words

Discovery of arginylation Soluble amino acid-incorporating system Assaying arginylation in cell extracts 

References

  1. 1.
    Crick FHC (1958) Protein synthesis. Symp Soc Exp Biol 12:138–163PubMedGoogle Scholar
  2. 2.
    Volkin E, Astrachan L (1956) Phosphorus incorporation in Escherichia coli ribo-nucleic acid after infection with bacteriophage T2. Virology 2(2):149–161CrossRefPubMedGoogle Scholar
  3. 3.
    Pardee AB, Jacob F, Monod J (1959) The genetic control and cytoplasmic expression of “Inducibility” in the synthesis of b-galactosidase by E. coli. J Mol Biol 1:165–178CrossRefGoogle Scholar
  4. 4.
    Kameyama T, Novelli GD (1960) The cell-free synthesis of b-galactosidase by Escherichia coli. Biochem Biophys Res Commun 2:393–396CrossRefGoogle Scholar
  5. 5.
    Chamberlin M, Berg P (1962) Deoxyribonucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci U S A 48:81–94PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Momose K, Kaji A (1966) Soluble amino acid incorporating-system. III. Further studies on the product and its relation to the ribosomal system for incorporation. J Biol Chem 241:3294–3307PubMedGoogle Scholar
  7. 7.
    Kaji H, Novelli GD, Kaji A (1963) A soluble amino acid-incorporating system from rat liver. Biochim Biophys Acta 76:474–477CrossRefPubMedGoogle Scholar
  8. 8.
    Kaji A, Kaji H, Novelli GD (1965) Soluble amino acid-incorporating system. II. Soluble nature of the system and the characterization of the radioactive product. J Biol Chem 240:1192–1197PubMedGoogle Scholar
  9. 9.
    Kaji A, Kaji H, Novelli GD (1965) Soluble amino acid-incorporation system. I. Preparation of the system and the nature of the reaction. J Biol Chem 240:1185–1191PubMedGoogle Scholar
  10. 10.
    Kaji A, Kaji H, Novelli GD (1963) A soluble amino acid incorporating system. Biochem Biophys Res Commun 10:406–409CrossRefPubMedGoogle Scholar
  11. 11.
    Eisenstadt JM, Kameyama T, Novelli GD (1962) A requirement for gene-specific deoxyribonucleic acid for the cell-free synthesis of beta-galactosidase. Proc Natl Acad Sci U S A 48:652–659PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Leibowitz MJ, Soffer RL (1971) Modification of a specific ribosomal protein catalyzed by leucyl, phenylalanyl-tRNA: protein transferase. Proc Natl Acad Sci U S A 68(8):1866–1869PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Soffer RL, Savage M (1974) A mutant of Escherichia coli defective in leucyl, phenylalanyl-tRNA-protein transferase. Proc Natl Acad Sci U S A 71(3):1004–1007PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Hirokawa G, Demeshkina N, Iwakura N, Kaji H, Kaji A (2006) The ribosome-recycling step: consensus or controversy? Trends Biochem Sci 31(3):143–149CrossRefPubMedGoogle Scholar
  15. 15.
    Yokoyama T, Shaikh TR, Iwakura N, Kaji H, Kaji A, Agrawal RK (2012) Structural insights into initial and intermediate steps of the ribosome-recycling process. EMBO J 31(7):1836–1846PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Vivanco-Dominguez S, Bueno-Martinez J, Leon-Avila G, Iwakura N, Kaji A, Kaji H, Guarneros G (2012) Protein synthesis factors (RF1, RF2, RF3, RRF, and tmRNA) and peptidyl-tRNA hydrolase rescue stalled ribosomes at sense codons. J Mol Biol 417(5):425–439CrossRefPubMedGoogle Scholar
  17. 17.
    Lamborg MR, Zamecnik PC (1960) Amino acid incorporation into protein by extracts of E. coli. Biochim Biophys Acta 42:206–211CrossRefPubMedGoogle Scholar
  18. 18.
    Hebecker S, Arendt W, Heinemann IU, Tiefenau JH, Nimtz M, Rohde M, Soll D, Moser J (2011) Alanyl-phosphatidylglycerol synthase: mechanism of substrate recognition during tRNA-dependent lipid modification in Pseudomonas aeruginosa. Mol Microbiol 80(4):935–950PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Mans RJ, Novelli GD (1960) A convenient, rapid and sensitive method for measuring the incorporation of radioactive amino acids into protein. Biochem Biophys Res Commun 3:540–543CrossRefPubMedGoogle Scholar
  20. 20.
    Brunngraber EF (1962) A simplified procedure for the preparation of “soluble” RNA from rat liver. Biochem Biophys Res Commun 8:1–3CrossRefPubMedGoogle Scholar
  21. 21.
    Hoagland M (1996) Biochemistry or molecular biology? The discovery of ‘soluble RNA’. Trends Biochem Sci 21(2):77–80PubMedGoogle Scholar
  22. 22.
    Kaji H (1968) Further studies on the soluble amino acid incorporating system from rat liver. Biochemistry 7(11):3844–3850CrossRefPubMedGoogle Scholar
  23. 23.
    Kopitz J, Rist B, Bohley P (1990) Post-translational arginylation of ornithine decarboxylase from rat hepatocytes. Biochem J 267(2):343–348PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Kwon YT, Kashina AS, Davydov IV, Hu RG, An JY, Seo JW, Du F, Varshavsky A (2002) An essential role of N-terminal arginylation in cardiovascular development. Science 297(5578):96–99CrossRefPubMedGoogle Scholar
  25. 25.
    Kaji H, Hara H, Lamon KD (1980) Fixation of cellular aging processes by SV40 virus transformation. Mech Ageing Dev 12(2):197–209CrossRefPubMedGoogle Scholar
  26. 26.
    Lamon KD, Kaji H (1980) Arginyl-tRNA transferase activity as a marker of cellular aging in peripheral rat tissues. Exp Gerontol 15(1):53–64CrossRefPubMedGoogle Scholar
  27. 27.
    Kaji H, Kaji A (2011) Protein modification by arginylation. Chem Biol 18(1):6–7CrossRefPubMedGoogle Scholar
  28. 28.
    Kaji H, Kaji A (2012) Global cellular regulation including cardiac function by post-translational protein arginylation. J Mol Cell Cardiol 53(3):314–316CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, Jefferson Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Department of Microbiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations