Transferase-Mediated Labeling of Protein N-Termini with Click Chemistry Handles

  • Anne M. Wagner
  • John B. Warner
  • Haviva E. Garrett
  • Christopher R. Walters
  • E. James PeterssonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1337)


The E. coli aminoacyl transferase (AaT) can be used to transfer a variety of unnatural amino acids, including those with azide or alkyne groups, to the α-amine of a protein with an N-terminal Lys or Arg. Subsequent functionalization through either copper-catalyzed or strain-promoted click reactions can be used to label the protein with fluorophores or biotin. This method can be used to directly detect AaT substrates or in a two-step protocol to detect substrates of the mammalian ATE1 transferase.

Key words

N-terminus N-end rule Aminoacyl transferase Protein modification Chemoenzymatic reaction Protein labeling Click chemistry 



This work was supported by funding from the University of Pennsylvania and the Searle Scholars Program (10-SSP-214 to EJP). HEG was supported by a summer research fellowship from Eli Lilly.


  1. 1.
    Varshavsky A (2011) The N-end rule pathway and regulation by proteolysis. Protein Sci 20(8):1298–1345PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Mahrus S, Trinidad JC, Barkan DT, Sali A, Burlingame AL, Wells JA (2008) Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134(5):866–876PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Xu GQ, Shin SBY, Jaffrey SR (2009) Global profiling of protease cleavage sites by chemoselective labeling of protein N-termini. Proc Natl Acad Sci U S A 106(46):19310–19315PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Kleifeld O, Doucet A, Prudova A, Keller UAD, Gioia M, Kizhakkedathu JN, Overall CM (2011) Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc 6(10):1578–1611CrossRefPubMedGoogle Scholar
  5. 5.
    Taki M, Kuno A, Matoba S, Kobayashi Y, Futami J, Murakami H, Suga H, Taira K, Hasegawa T, Sisido M (2006) Leucyl/phenylalanyl-tRNA-protein transferase-mediated chemoenzymatic coupling of N-terminal arg/lys units in posttranslationally processed proteins with non-natural amino acids. Chembiochem 7(11):1676–1679CrossRefPubMedGoogle Scholar
  6. 6.
    Connor RE, Piatkov K, Varshavsky A, Tirrell DA (2008) Enzymatic N-terminal addition of noncanonical amino acids to peptides and proteins. Chembiochem 9(3):366–369CrossRefPubMedGoogle Scholar
  7. 7.
    Wagner AM, Fegley MW, Warner JB, Grindley CLJ, Marotta NP, Petersson EJ (2011) N-terminal protein modification using simple aminoacyl transferase substrates. J Am Chem Soc 133(38):15139–15147PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Ninnis RL, Spall SK, Talbo GH, Truscott KN, Dougan DA (2009) Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli. EMBO J 28(12):1732–1744PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Leibowitz MJ, Soffer RL (1969) A soluble enzyme from Escherichia coli which catalyzes transfer of leucine and phenylalanine from tRNA to acceptor proteins. Biochem Biophys Res Commun 36(1):47–53CrossRefPubMedGoogle Scholar
  10. 10.
    Scarpulla RC, Deutch CE, Soffer RL (1976) Transfer of methionyl residues by leucyl, phenylalanyl-transfer-RNA-protein transferase. Biochem Biophys Res Commun 71(2):584–589CrossRefPubMedGoogle Scholar
  11. 11.
    Kwon YT, Reiss Y, Fried VA, Hershko A, Yoon JK, Gonda DK, Sangan P, Copeland NG, Jenkins NA, Varshavsky A (1998) The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc Natl Acad Sci U S A 95(14):7898–7903PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Kwon YT, Kashina AS, Davydov IV, Hu RG, An JY, Seo JW, Du F, Varshavsky A (2002) An essential role of N-terminal arginylation in cardiovascular development. Science 297(5578):96–99CrossRefPubMedGoogle Scholar
  13. 13.
    Ferber S, Ciechanover A (1987) Role of arginine-transfer RNA in protein-degradation by the ubiquitin pathway. Nature 326(6115):808–811CrossRefPubMedGoogle Scholar
  14. 14.
    Kwon YT, Xia ZX, Davydov IV, Lecker SH, Varshavsky A (2001) Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3 alpha) of the N-end rule pathway. Mol Cell Biol 21(23):8007–8021PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Wang JL, Han XM, Saha S, Xu T, Rai R, Zhang FL, Wolf YI, Wolfson A, Yates JR, Kashina A (2011) Arginyltransferase is an ATP-independent self-regulating enzyme that forms distinct functional complexes in vivo. Chem Biol 18(1):121–130PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Tanaka T, Wagner AM, Warner JB, Wang YJ, Petersson EJ (2013) Expressed protein ligation at methionine: N-terminal attachment of homocysteine, ligation, and masking. Angew Chem Int Ed Engl 52(24):6210–6213CrossRefPubMedGoogle Scholar
  17. 17.
    Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48(38):6974–6998CrossRefGoogle Scholar
  18. 18.
    Debets MF, van Berkel SS, Schoffelen S, Rutjes F, van Hest JCM, van Delft FL (2010) Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3 + 2) cycloaddition. Chem Commun 46(1):97–99CrossRefGoogle Scholar
  19. 19.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599CrossRefGoogle Scholar
  20. 20.
    Soffer RL (1973) Peptide acceptors in leucine, phenylalanine transfer-reaction. J Biol Chem 248(24):8424–8428PubMedGoogle Scholar
  21. 21.
    Link AJ, Vink MKS, Agard NJ, Prescher JA, Bertozzi CR, Tirrell DA (2006) Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids. Proc Natl Acad Sci U S A 103(27):10180–10185PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Taiji M, Yokoyama S, Miyazawa T (1983) Transacylation rates of (aminoacyl)adenosine moiety at the 3′-terminus of aminoacyl transfer ribonucleic acid. Biochemistry 22:3220–3225CrossRefPubMedGoogle Scholar
  23. 23.
    Watanabe K, Toh Y, Suto K, Shimizu Y, Oka N, Wada T, Tomita K (2007) Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase. Nature 449(7164):867–871CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anne M. Wagner
    • 1
  • John B. Warner
    • 1
  • Haviva E. Garrett
    • 1
  • Christopher R. Walters
    • 1
  • E. James Petersson
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations