Advertisement

Protein Arginylation: Over 50 Years of Discovery

  • Anna S. KashinaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1337)

Abstract

Posttranslational modifications have emerged in recent years as the major biological regulators responsible for the orders of magnitude increase in complexity of protein functions. These “molecular switches” affect nearly every protein in vivo by modulating their protein structure, activity, molecular interactions, and homeostasis. While over 350 protein modifications have been described, only a handful of them have been characterized. Until recently, protein arginylation has belonged to the list of obscure, poorly understood posttranslational modifications, before the recent explosion of studies has put arginylation on the map of intracellular metabolic pathways and biological processes. This chapter contains an overview of all the major milestones in the protein arginylation field, from its original discovery in 1963 to this day.

Key words

Posttranslational modifications Biological complexity Regulation Protein arginylation 

References

  1. 1.
    Kaji A, Kaji H, Novelli GD (1963) A soluble amino acid incorporating system. Biochem Biophys Res Commun 10:406–409CrossRefPubMedGoogle Scholar
  2. 2.
    Kaji A, Kaji H, Novelli GD (1965) Soluble amino acid-incorporating system. II. Soluble nature of the system and the characterization of the radioactive product. J Biol Chem 240:1192–1197PubMedGoogle Scholar
  3. 3.
    Kaji A, Kaji H, Novelli GD (1965) Soluble amino acid-incorporating system. I. Preparation of the system and nature of the reaction. J Biol Chem 240:1185–1191PubMedGoogle Scholar
  4. 4.
    Momose K, Kaji A (1966) Soluble amino acid-incorporating system. 3. Further studies on the product and its relation to the ribosomal system for incorporation. J Biol Chem 241(14):3294–3307PubMedGoogle Scholar
  5. 5.
    Kaji H, Novelli GD, Kaji A (1963) A soluble amino acid-incorporating system from rat liver. Biochim Biophys Acta 76:474–477CrossRefPubMedGoogle Scholar
  6. 6.
    Kaji H (1968) Further studies on the soluble amino acid incorporating system from rat liver. Biochemistry 7(11):3844–3850CrossRefPubMedGoogle Scholar
  7. 7.
    Kaji H, Rao P (1976) Membrane modification by arginyl tRNA. FEBS Lett 66(2):194–197CrossRefPubMedGoogle Scholar
  8. 8.
    Manahan CO, App AA (1973) An arginyl-transfer ribonucleic acid protein transferase from cereal embryos. Plant Physiol 52(1):13–16PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Lock RA, Harding HW, Rogers GE (1976) Arginine transferase activity in homogenates from guinea-pig hair follicles. J Invest Dermatol 67(5):582–586CrossRefPubMedGoogle Scholar
  10. 10.
    Lamon KD, Kaji H (1980) Arginyl-tRNA transferase activity as a marker of cellular aging in peripheral rat tissues. Exp Gerontol 15(1):53–64CrossRefPubMedGoogle Scholar
  11. 11.
    Wang YM, Ingoglia NA (1997) N-terminal arginylation of sciatic nerve and brain proteins following injury. Neurochem Res 22(12):1453–1459CrossRefPubMedGoogle Scholar
  12. 12.
    Xu NS, Chakraborty G, Hassankhani A, Ingoglia NA (1993) N-terminal arginylation of proteins in explants of injured sciatic nerves and embryonic brains of rats. Neurochem Res 18(11):1117–1123CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang N, Donnelly R, Ingoglia NA (1998) Evidence that oxidized proteins are substrates for N-terminal arginylation. Neurochem Res 23(11):1411–1420CrossRefPubMedGoogle Scholar
  14. 14.
    Ciechanover A, Ferber S, Ganoth D, Elias S, Hershko A, Arfin S (1988) Purification and characterization of arginyl-tRNA-protein transferase from rabbit reticulocytes. Its involvement in post-translational modification and degradation of acidic NH2 termini substrates of the ubiquitin pathway. J Biol Chem 263(23):11155–11167PubMedGoogle Scholar
  15. 15.
    Balzi E, Choder M, Chen WN, Varshavsky A, Goffeau A (1990) Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae. J Biol Chem 265(13):7464–7471PubMedGoogle Scholar
  16. 16.
    Kaji H (1976) Amino-terminal arginylation of chromosomal proteins by arginyl-tRNA. Biochemistry 15(23):5121–5125CrossRefPubMedGoogle Scholar
  17. 17.
    Bohley P, Kopitz J, Adam G, Rist B, von Appen F, Urban S (1991) Post-translational arginylation and intracellular proteolysis. Biomed Biochim Acta 50(4-6):343–346PubMedGoogle Scholar
  18. 18.
    Hallak ME, Barra HS, Caputto R (1985) Posttranslational incorporation of [14C]arginine into rat brain proteins. Acceptor changes during development. J Neurochem 44(3):665–669CrossRefPubMedGoogle Scholar
  19. 19.
    Takao K, Samejima K (1999) Arginyl-tRNA-protein transferase activities in crude supernatants of rat tissues. Biol Pharm Bull 22(9):1007–1009CrossRefPubMedGoogle Scholar
  20. 20.
    Hallak ME, Bongiovanni G, Barra HS (1991) The posttranslational arginylation of proteins in different regions of the rat brain. J Neurochem 57(5):1735–1739CrossRefPubMedGoogle Scholar
  21. 21.
    Wagner BJ, Margolis JW (1991) Post-translational arginylation in the bovine lens. Exp Eye Res 53(5):609–614CrossRefPubMedGoogle Scholar
  22. 22.
    Fissolo S, Bongiovanni G, Decca MB, Hallak ME (2000) Post-translational arginylation of proteins in cultured cells. Neurochem Res 25(1):71–76CrossRefPubMedGoogle Scholar
  23. 23.
    Rao P, Kaji H (1977) Comparative studies on isoaccepting arginyl tRNAs from transformed cells and their utilization in post-translational protein modification. Arch Biochem Biophys 181(2):591–595CrossRefPubMedGoogle Scholar
  24. 24.
    Kopitz J, Rist B, Bohley P (1990) Post-translational arginylation of ornithine decarboxylase from rat hepatocytes. Biochem J 267(2):343–348PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Bohley P, Kopitz J, Adam G (1988) Surface hydrophobicity, arginylation and degradation of cytosol proteins from rat hepatocytes. Biol Chem Hoppe Seyler 369(Suppl):307–310PubMedGoogle Scholar
  26. 26.
    Bohley P, Kopitz J, Adam G (1988) Arginylation, surface hydrophobicity and degradation of cytosol proteins from rat hepatocytes. Adv Exp Med Biol 240:159–169CrossRefPubMedGoogle Scholar
  27. 27.
    Soffer RL (1971) Enzymatic modification of proteins. 4. Arginylation of bovine thyroglobulin. J Biol Chem 246(5):1481–1484PubMedGoogle Scholar
  28. 28.
    Eriste E, Norberg A, Nepomuceno D, Kuei C, Kamme F, Tran DT, Strupat K, Jornvall H, Liu C, Lovenberg TW, Sillard R (2005) A novel form of neurotensin post-translationally modified by arginylation. J Biol Chem 280(42):35089–35097CrossRefPubMedGoogle Scholar
  29. 29.
    Soffer RL (1975) Enzymatic arginylation of beta-melanocyte-stimulating hormone and of angiotensin II. J Biol Chem 250(7):2626–2629PubMedGoogle Scholar
  30. 30.
    Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234(4773):179–186CrossRefPubMedGoogle Scholar
  31. 31.
    Gonda DK, Bachmair A, Wunning I, Tobias JW, Lane WS, Varshavsky A (1989) Universality and structure of the N-end rule. J Biol Chem 264(28):16700–16712PubMedGoogle Scholar
  32. 32.
    Varshavsky A (1992) The N-end rule. Cell 69(5):725–735CrossRefPubMedGoogle Scholar
  33. 33.
    Varshavsky A (1995) The N-end rule. Cold Spring Harb Symp Quant Biol 60:461–478CrossRefPubMedGoogle Scholar
  34. 34.
    Elias S, Ciechanover A (1990) Post-translational addition of an arginine moiety to acidic NH2 termini of proteins is required for their recognition by ubiquitin-protein ligase. J Biol Chem 265(26):15511–15517PubMedGoogle Scholar
  35. 35.
    Davydov IV, Varshavsky A (2000) RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J Biol Chem 275(30):22931–22941CrossRefPubMedGoogle Scholar
  36. 36.
    Lee MJ, Tasaki T, Moroi K, An JY, Kimura S, Davydov IV, Kwon YT (2005) RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc Natl Acad Sci U S A 102(42):15030–15035PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Kwon YT, Kashina AS, Varshavsky A (1999) Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the N-end rule pathway. Mol Cell Biol 19(1):182–193PubMedCentralPubMedGoogle Scholar
  38. 38.
    Rai R, Kashina A (2005) Identification of mammalian arginyltransferases that modify a specific subset of protein substrates. Proc Natl Acad Sci U S A 102(29):10123–10128PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Hu RG, Brower CS, Wang H, Davydov IV, Sheng J, Zhou J, Kwon YT, Varshavsky A (2006) Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms. J Biol Chem 281(43):32559–32573CrossRefPubMedGoogle Scholar
  40. 40.
    Kwon YT, Kashina AS, Davydov IV, Hu RG, An JY, Seo JW, Du F, Varshavsky A (2002) An essential role of N-terminal arginylation in cardiovascular development. Science 297(5578):96–99CrossRefPubMedGoogle Scholar
  41. 41.
    Kurosaka S, Leu NA, Zhang F, Bunte R, Saha S, Wang J, Guo C, He W, Kashina A (2010) Arginylation-dependent neural crest cell migration is essential for mouse development. PLoS Genet 6(3):e1000878PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Rai R, Wong CC, Xu T, Leu NA, Dong DW, Guo C, McLaughlin KJ, Yates JR 3rd, Kashina A (2008) Arginyltransferase regulates alpha cardiac actin function, myofibril formation and contractility during heart development. Development 135(23):3881–3889PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Leu NA, Kurosaka S, Kashina A (2009) Conditional Tek promoter-driven deletion of arginyltransferase in the germ line causes defects in gametogenesis and early embryonic lethality in mice. PLoS One 4(11):e7734PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Brower CS, Varshavsky A (2009) Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations. PLoS One 4(11):e7757PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Yoshida S, Ito M, Callis J, Nishida I, Watanabe A (2002) A delayed leaf senescence mutant is defective in arginyl-tRNA:protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis. Plant J 32(1):129–137CrossRefPubMedGoogle Scholar
  46. 46.
    Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136CrossRefPubMedGoogle Scholar
  47. 47.
    Graciet E, Walter F, Maoileidigh DO, Pollmann S, Meyerowitz EM, Varshavsky A, Wellmer F (2009) The N-end rule pathway controls multiple functions during Arabidopsis shoot and leaf development. Proc Natl Acad Sci U S A 106(32):13618–13623PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Holman TJ, Jones PD, Russell L, Medhurst A, Ubeda Tomas S, Talloji P, Marquez J, Schmuths H, Tung SA, Taylor I, Footitt S, Bachmair A, Theodoulou FL, Holdsworth MJ (2009) The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis. Proc Natl Acad Sci U S A 106(11):4549–4554PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Saha S, Kashina A (2011) Posttranslational arginylation as a global biological regulator. Dev Biol 358(1):1–8PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Wong CCL, Xu T, Rai R, Bailey AO, Yates JR, Wolf YI, Zebroski H, Kashina A (2007) Global analysis of posttranslational protein arginylation. PLoS Biol 5(10), e258PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Xu T, Wong CCL, Kashina A, Yates JR III (2009) Identification of posstranslationally arginylated proteins and peptides by mass spectrometry. Nat Protoc 43(3):325–332CrossRefGoogle Scholar
  52. 52.
    Saha S, Wong CC, Xu T, Namgoong S, Zebroski H, Yates JR 3rd, Kashina A (2011) Arginylation and methylation double up to regulate nuclear proteins and nuclear architecture in vivo. Chem Biol 18(11):1369–1378PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Karakozova M, Kozak M, Wong CC, Bailey AO, Yates JR 3rd, Mogilner A, Zebroski H, Kashina A (2006) Arginylation of beta-actin regulates actin cytoskeleton and cell motility. Science 313(5784):192–196CrossRefPubMedGoogle Scholar
  54. 54.
    Saha S, Mundia MM, Zhang F, Demers RW, Korobova F, Svitkina T, Perieteanu AA, Dawson JF, Kashina A (2010) Arginylation regulates intracellular actin polymer level by modulating actin properties and binding of capping and severing proteins. Mol Biol Cell 21(8):1350–1361PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Carpio MA, Decca MB, Lopez Sambrooks C, Durand ES, Montich GG, Hallak ME (2013) Calreticulin-dimerization induced by post-translational arginylation is critical for stress granules scaffolding. Int J Biochem Cell Biol 45(7):1223–1235CrossRefPubMedGoogle Scholar
  56. 56.
    Lopez Sambrooks C, Carpio MA, Hallak ME (2012) Arginylated calreticulin at plasma membrane increases susceptibility of cells to apoptosis. J Biol Chem 287(26):22043–22054PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.
    Carpio MA, Lopez Sambrooks C, Durand ES, Hallak ME (2010) The arginylation-dependent association of calreticulin with stress granules is regulated by calcium. Biochem J 429(1):63–72CrossRefPubMedGoogle Scholar
  58. 58.
    Decca MB, Carpio MA, Bosc C, Galiano MR, Job D, Andrieux A, Hallak ME (2007) Post-translational arginylation of calreticulin: a new isospecies of calreticulin component of stress granules. J Biol Chem 282(11):8237–8245PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Zhang F, Saha S, Kashina A (2012) Arginylation-dependent regulation of a proteolytic product of talin is essential for cell-cell adhesion. J Cell Biol 197(6):819–836PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Lian L, Suzuki A, Hayes V, Saha S, Han X, Xu T, Yates JR, Poncz M, Kashina A, Abrams CS (2014) Loss of ATE1-mediated arginylation leads to impaired platelet myosin phosphorylation, clot retraction, and in vivo thrombosis formation. Haematologica 99:554PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Cornachione AS, Leite FS, Wang J, Leu NA, Kalganov A, Volgin D, Han X, Xu T, Cheng YS, Yates JR 3rd, Rassier DE, Kashina A (2014) Arginylation of myosin heavy chain regulates skeletal muscle strength. Cell Rep 8:470PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Zhang F, Saha S, Shabalina SA, Kashina A (2010) Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation. Science 329(5998):1534–1537PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Animal Biology, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations