Skip to main content

Design, Assembly, and Characterization of TALE-Based Transcriptional Activators and Repressors

  • Protocol
TALENs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1338))

Abstract

Transcription activator-like effectors (TALEs) are modular DNA-binding proteins that can be fused to a variety of effector domains to regulate the epigenome. Nucleotide recognition by TALE monomers follows a simple cipher, making this a powerful and versatile method to activate or repress gene expression. Described here are methods to design, assemble, and test TALE transcription factors (TALE-TFs) for control of endogenous gene expression. In this protocol, TALE arrays are constructed by Golden Gate cloning and tested for activity by transfection and quantitative RT-PCR. These methods for engineering TALE-TFs are useful for studies in reverse genetics and genomics, synthetic biology, and gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gersbach CA, Gaj T, Barbas CF III (2014) Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc Chem Res 47(8):2309–2318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kabadi AM, Gersbach CA (2014) Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression. Methods 69(2):188–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512

    Article  CAS  PubMed  Google Scholar 

  5. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501

    Article  CAS  PubMed  Google Scholar 

  6. Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148

    Article  CAS  PubMed  Google Scholar 

  7. Zhang F, Cong L, Lodato S et al (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29(2):149–153

    Article  PubMed Central  PubMed  Google Scholar 

  8. Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cong L, Zhou R, Kuo YC et al (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968

    Article  PubMed Central  PubMed  Google Scholar 

  10. Morbitzer R, Romer P, Boch J et al (2010) Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci U S A 107(50):21617–21622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Streubel J, Blucher C, Landgraf A et al (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30(7):593–595

    Article  CAS  PubMed  Google Scholar 

  12. Mahfouz MM, Li L, Piatek M et al (2012) Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol Biol 78(3):311–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Crocker J, Stern DL (2013) TALE-mediated modulation of transcriptional enhancers in vivo. Nat Methods 10(8):762–767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Konermann S, Brigham MD, Trevino AE et al (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500(7463):472–476

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Bultmann S, Morbitzer R, Schmidt CS et al (2012) Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res 40(12):5368–5377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gao X, Yang J, Tsang JC et al (2013) Reprogramming to pluripotency using designer TALE transcription factors targeting enhancers. Stem Cell Reports 1(2):183–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hu J, Lei Y, Wong WK et al (2014) Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res 42(7):4375–4390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Garg A, Lohmueller JJ, Silver PA et al (2012) Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Res 40(15):7584–7595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Li Y, Moore R, Guinn M et al (2012) Transcription activator-like effector hybrids for conditional control and rewiring of chromosomal transgene expression. Sci Rep 2:897

    PubMed Central  PubMed  Google Scholar 

  20. Perez-Pinera P, Ousterout DG, Brunger JM et al (2013) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods 10(3):239–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Maeder ML, Linder SJ, Reyon D et al (2013) Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods 10(3):243–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Maeder ML, Angstman JF, Richardson ME et al (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31(12):1137–1142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Mendenhall EM, Williamson KE, Reyon D et al (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31(12):1133–1136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lamb BM, Mercer AC, Barbas CF III (2013) Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases. Nucleic Acids Res 41(21):9779–9785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. de Lange O, Schreiber T, Schandry N et al (2013) Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytol 199(3):773–786

    Article  PubMed  Google Scholar 

  26. Reyon D, Tsai SQ, Khayter C et al (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30(5):460–465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Reyon D, Maeder ML, Khayter C et al (2013) Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly. In: Ausubel FM et al (ed) Current protocols in molecular biology, Chapter 12:Unit 12 16

    Google Scholar 

  28. Schmid-Burgk JL, Schmidt T, Kaiser V et al (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol 31(1):76–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Doyle EL, Booher NJ, Standage DS et al (2012) TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40(Web Server issue):W117–W122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Meckler JF, Bhakta MS, Kim MS et al (2013) Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res 41(7):4118–4128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  32. Thurman RE, Rynes E, Humbert R et al (2012) The accessible chromatin landscape of the human genome. Nature 489(7414):75–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Boyle AP, Davis S, Shulha HP et al (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132(2):311–322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lin Y, Fine EJ, Zheng Z et al (2014) SAPTA: a new design tool for improving TALE nuclease activity. Nucleic Acids Res 42(6):e47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Guilinger JP, Pattanayak V, Reyon D et al (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 11(4):429–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Perez-Pinera P, Kocak DD, Vockley CM et al (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10(10):973–976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ousterout DG, Perez-Pinera P, Thakore PI et al (2013) Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther 21(9):1718–1726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Holkers M, Maggio I, Liu J et al (2013) Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 41(5):e63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a US National Institutes of Health (NIH) Director’s New Innovator Award (DP2OD008586), National Science Foundation (NSF) Faculty Early Career Development (CAREER) Award (CBET-1151035), NIH R01DA036865, NIH R21AR065956, NIH UH3TR000505, NIH P30AR066527, the Duke Coulter Translational Partnership, and an American Heart Association Scientist Development Grant (10SDG3060033). P.I.T. was supported by a National Science Foundation Graduate Research Fellowship and an American Heart Association Mid-Atlantic Affiliate Predoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Gersbach Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thakore, P.I., Gersbach, C.A. (2016). Design, Assembly, and Characterization of TALE-Based Transcriptional Activators and Repressors. In: Kühn, R., Wurst, W., Wefers, B. (eds) TALENs. Methods in Molecular Biology, vol 1338. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2932-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2932-0_7

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2931-3

  • Online ISBN: 978-1-4939-2932-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics