Skip to main content
Book cover

TALENs pp 9–25Cite as

TAL Effector DNA-Binding Principles and Specificity

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1338))

Abstract

Transcription activator-like effectors (TALEs) are proteins with a unique DNA-binding domain that confers both a predictable and programmable specificity. The DNA-binding domain consists typically of 34-amino acid near-identical repeats. The repeats form a right-handed superhelical structure that wraps around the DNA double helix and exposes the variable amino acids at position 13 of each repeat to the sense strand DNA bases. Each repeat binds one base in a highly specific, non-overlapping, and comma-free fashion. Although TALE specificities are encoded in a simple way, sophisticated rules can be taken into account to build highly efficient DNA-binding modules for biotechnological use.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  PubMed  Google Scholar 

  2. Kay S, Hahn S, Marois E, Hause G, Bonas U (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648–651

    Article  CAS  PubMed  Google Scholar 

  3. Römer P, Hahn S, Jordan T, Strauß T, Bonas U, Lahaye T (2007) Plant-pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318:645–648

    Article  PubMed  Google Scholar 

  4. Van den Ackerveken G, Marois E, Bonas U (1996) Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87:1307–1316

    Article  PubMed  Google Scholar 

  5. Gao H, Wu X, Chai J, Han Z (2012) Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res 22:1716–1720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Szurek B, Rossier O, Hause G, Bonas U (2002) Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol Microbiol 46:13–23

    Article  CAS  PubMed  Google Scholar 

  7. Zhu W, Yang B, Chittoor JM, Johnson LB, White FF (1998) AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol Plant Microbe Interact 11:824–832

    Article  CAS  PubMed  Google Scholar 

  8. Bonas U, Stall RE, Staskawicz BJ (1989) Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218:127–136

    Article  CAS  PubMed  Google Scholar 

  9. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  CAS  PubMed  Google Scholar 

  10. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  11. Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, VanDyk JK et al (2012) TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40:W117–W122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Grau J, Wolf A, Reschke M, Bonas U, Posch S, Boch J (2013) Computational predictions provide insights into the biology of TAL effector target sites. PLoS Comput Biol 9:e1002962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Pérez-Quintero AL, Rodriguez-R LM, Dereeper A, López C, Koebnik R, Szurek B et al (2013) An improved method for TAL effectors DNA-binding sites prediction reveals functional convergence in TAL repertoires of Xanthomonas oryzae strains. PLoS One 8:e68464

    Article  PubMed Central  PubMed  Google Scholar 

  14. Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P et al (2012) Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 40:e117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Geißler R, Scholze H, Hahn S, Streubel J, Bonas U, Behrens S-E et al (2011) Transcriptional activators of human genes with programmable DNA-specificity. PLoS One 6:e19509

    Article  PubMed  Google Scholar 

  17. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700

    Article  PubMed  Google Scholar 

  18. Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH et al (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39:6315–6325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Liang J, Chao R, Abil Z, Bao Z, Zhao H (2014) FairyTALE: a high-throughput TAL effector synthesis platform. ACS Synth Biol 3:67–73

    Article  CAS  PubMed  Google Scholar 

  20. Morbitzer R, Elsaesser J, Hausner J, Lahaye T (2011) Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 39:5790–5799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7:171–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Schmid-Burgk JL, Schmidt T, Kaiser V, Honing K, Hornung V (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol 31:76–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wang Z, Li J, Huang H, Wang G, Jiang M, Yin S et al (2012) An integrated chip for the high-throughput synthesis of transcription activator-like effectors. Angew Chem Int Ed Engl 51:8505–8508

    Article  CAS  PubMed  Google Scholar 

  25. Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of designer TAL effectors by golden gate cloning. PLoS One 6:e19722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153

    Article  PubMed Central  PubMed  Google Scholar 

  27. Doyle EL, Stoddard BL, Voytas DF, Bogdanove AJ (2013) TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol 23:390–398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Mercer AC, Gaj T, Fuller RP, Barbas CF III (2012) Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res 40:11163–11172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Owens JB, Mauro D, Stoytchev I, Bhakta MS, Kim MS, Segal DJ et al (2013) Transcription activator like effector (TALE)-directed piggyBac transposition in human cells. Nucleic Acids Res 41:9197–9207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Schreiber T, Bonas U (2014) Repeat 1 of TAL effectors affects target specificity for the base at position zero. Nucleic Acids Res 42:7160–7169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Maeder ML, Linder SJ, Reyon D, Angstman JF, Fu Y, Sander JD et al (2013) Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods 10:243–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Cong L, Zhou R, Kuo YC, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968

    Article  PubMed Central  PubMed  Google Scholar 

  33. Streubel J, Blücher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30:593–595

    Article  CAS  PubMed  Google Scholar 

  34. Yang J, Zhang Y, Yuan P, Zhou Y, Cai C, Ren Q et al (2014) Complete decoding of TAL effectors for DNA recognition. Cell Res 24:628–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK et al (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335:720–723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Deng D, Yan C, Wu J, Pan X, Yan N (2014) Revisiting the TALE repeat. Protein Cell 5:297–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C et al (2013) Structure of the AvrBs3-DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Crystallogr D Biol Crystallogr 69:1707–1716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Wicky BIM, Stenta M, Dal Peraro M (2013) TAL effector specificity stems from negative discrimination. PLoS One 8:e80261

    Article  PubMed Central  PubMed  Google Scholar 

  40. Valton J, Dupuy A, Daboussi F, Thomas S, Marechal A, Macmaster R et al (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287:38427–38432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Deng D, Yin P, Yan C, Pan X, Gong X, Qi S et al (2012) Recognition of methylated DNA by TAL effectors. Cell Res 22:1502–1504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Christian ML, Demorest ZL, Starker CG, Osborn MJ, Nyquist MD, Zhang Y et al (2012) Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One 7:e45383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Meckler JF, Bhakta MS, Kim MS, Ovadia R, Habrian CH, Zykovich A et al (2013) Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res 41:4118–4128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Wan H, Hu JP, Li KS, Tian XH, Chang S (2013) Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors. PLoS One 8:e76045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Garg A, Lohmueller JJ, Silver PA, Armel TZ (2012) Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Res 40:7584–7595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A et al (2010) TAL effector nucleases create targeted DNA double-strand breaks. Genetics 186:757–761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  48. Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39:9283–9293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Antony G, Zhou J, Huang S, Li T, Liu B, White F et al (2010) Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22:3864–3876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Römer P, Recht S, Strauß T, Elsaesser J, Schornack S, Boch J et al (2010) Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol 187:1048–1057

    Article  PubMed  Google Scholar 

  52. Strauß T, van Poecke RM, Strauß A, Römer P, Minsavage GV, Singh S et al (2012) RNA-seq pinpoints a Xanthomonas TAL-effector activated resistance gene in a large-crop genome. Proc Natl Acad Sci U S A 109:19480–19485

    Google Scholar 

  53. Römer P, Strauß T, Hahn S, Scholze H, Morbitzer R, Grau J et al (2009) Recognition of AvrBs3-like proteins is mediated by specific binding to promoters of matching pepper Bs3 alleles. Plant Physiol 150:1697–1712

    Article  PubMed Central  PubMed  Google Scholar 

  54. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838

    Article  CAS  PubMed  Google Scholar 

  55. Osborn MJ, Starker CG, McElroy AN, Webber BR, Riddle MJ, Xia L et al (2013) TALEN-based gene correction for epidermolysis bullosa. Mol Ther 21:1151–1159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Richter A, Streubel J, Blücher C, Szurek B, Reschke M, Grau J et al (2014) A TAL effector repeat architecture for frame shift binding. Nat Commun 5:3447

    Article  PubMed  Google Scholar 

  57. Bonas U, Conrads-Strauch J, Balbo I (1993) Resistance in tomato to Xanthomonas campestris pv. vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Mol Gen Genet 238:261–269

    CAS  PubMed  Google Scholar 

  58. Morbitzer R, Römer P, Boch J, Lahaye T (2010) Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci U S A 107:21617–21622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y et al (2013) Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 3:3379

    Article  PubMed Central  PubMed  Google Scholar 

  60. Kay S, Boch J, Bonas U (2005) Characterization of AvrBs3-like effectors from a Brassicaceae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture. Mol Plant Microbe Interact 18:838–848

    Article  CAS  PubMed  Google Scholar 

  61. Schornack S, Moscou MJ, Ward ER, Horvath DM (2013) Engineering plant disease resistance based on TAL effectors. Annu Rev Phytopathol 51:383–406

    Article  CAS  PubMed  Google Scholar 

  62. de Lange O, Schreiber T, Schandry N, Radeck J, Braun KH, Koszinowski J et al (2013) Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytol 199:773–786

    Article  PubMed  Google Scholar 

  63. Li L, Atef A, Piatek A, Ali Z, Piatek M, Aouida M et al (2013) Characterization and DNA-binding specificities of Ralstonia TAL-like effectors. Mol Plant 6:1318–1330

    Google Scholar 

  64. Lackner G, Moebius N, Partida-Martinez L, Hertweck C (2011) Complete genome sequence of Burkholderia rhizoxinica, an Endosymbiont of Rhizopus microsporus. J Bacteriol 193:783–784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888

    Article  CAS  PubMed  Google Scholar 

  66. de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T (2014) Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nucleic Acids Res 42:7436–7449

    Article  PubMed Central  PubMed  Google Scholar 

  67. Juillerat A, Bertonati C, Dubois G, Guyot V, Thomas S, Valton J et al (2014) BurrH: a new modular DNA binding protein for genome engineering. Sci Rep 4:3831

    Article  PubMed  Google Scholar 

  68. Stella S, Molina R, Lopez-Mendez B, Juillerat A, Bertonati C, Daboussi F et al (2014) BuD, a helix-loop-helix DNA-binding domain for genome modification. Acta Crystallogr D Biol Crystallogr 70:2042–2052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109:17382–17387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Sun N, Liang J, Abil Z, Zhao H (2012) Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst 8:1255–1263

    Article  CAS  PubMed  Google Scholar 

  71. Doyle EL, Hummel AW, Demorest ZL, Starker CG, Voytas DF, Bradley P et al (2013) TAL effector specificity for base 0 of the DNA target is altered in a complex, effector- and assay-dependent manner by substitutions for the tryptophan in cryptic repeat −1. PLoS One 8:e82120

    Article  PubMed Central  PubMed  Google Scholar 

  72. Lamb BM, Mercer AC, Barbas CF III (2013) Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases. Nucleic Acids Res 41:9779–9785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Tsuji S, Futaki S, Imanishi M (2013) Creating a TALE protein with unbiased 5′-T binding. Biochem Biophys Res Commun 441:262–265

    Article  CAS  PubMed  Google Scholar 

  74. Sun N, Bao Z, Xiong X, Zhao H (2014) SunnyTALEN: a second-generation TALEN system for human genome editing. Biotechnol Bioeng 111:683–691

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank U. Bonas and T. Schreiber for discussion and comments on the manuscript. This work was supported by DFG grants BO 1496/6-1 and BO1496/7-1 to JB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Boch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Richter, A., Streubel, J., Boch, J. (2016). TAL Effector DNA-Binding Principles and Specificity. In: Kühn, R., Wurst, W., Wefers, B. (eds) TALENs. Methods in Molecular Biology, vol 1338. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2932-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2932-0_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2931-3

  • Online ISBN: 978-1-4939-2932-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics