Identification of Cyclin A Binders with a Fluorescent Peptide Sensor

  • Elena Pazos
  • José L. Mascareñas
  • M. Eugenio Vázquez
Part of the Methods in Molecular Biology book series (MIMB, volume 1336)

Abstract

A peptide sensor that integrates the 4-dimethylaminophthalimide (4-DMAP) fluorophore in a short cyclin A binding sequence displays a large fluorescence emission increase upon interacting with the cyclin A Binding Groove (CBG). Competitive displacement assays of this probe allow the straightforward identification of peptides that interact with the CBG, which could potentially block the recognition of CDK/cyclin A kinase substrates.

Key words

Competition titration Cyclin A Fluorescence Inhibitors Peptides Sensors 

Notes

Acknowledgments

We thank the support given by the Spanish grants SAF2010-20822-C02, CTQ2009-14431/BQU, Consolider Ingenio 2010 and the Xunta de Galicia INCITE09 209084PR, GRC2010/12, PGIDIT08CSA-047209PR. We also thank Prof. Anxo Vidal, from the Universidade de Santiago de Compostela, and Mar Orzáez and Enrique Pérez-Payá from Príncipe Felipe Research Centre in Valencia for their help with cyclin A expression. E. P. thanks the Xunta de Galicia for her postdoctoral contract.

References

  1. 1.
    Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918PubMedCrossRefGoogle Scholar
  2. 2.
    Lavis LD, Raines RT (2008) Bright ideas for chemical biology. ACS Chem Biol 3:142–155PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224PubMedCrossRefGoogle Scholar
  4. 4.
    Schäferling M (2012) The art of fluorescence imaging with chemical sensors. Angew Chem Int Ed 51:3532–3554CrossRefGoogle Scholar
  5. 5.
    Lemke EA, Schultz C (2011) Principles for designing fluorescent sensors and reporters. Nat Chem Biol 7:480–483PubMedCrossRefGoogle Scholar
  6. 6.
    Pazos E, Vazquez O, Mascareñas JL, Vazquez ME (2009) Peptide-based fluorescent biosensors. Chem Soc Rev 38:3348–3359PubMedCrossRefGoogle Scholar
  7. 7.
    VanEngelenburg SB, Palmer AE (2008) Fluorescent biosensors of protein function. Curr Opin Chem Biol 12:60–65PubMedCrossRefGoogle Scholar
  8. 8.
    Johnsson N, Johnsson K (2007) Chemical tools for biomolecular imaging. ACS Chem Biol 2:31–38PubMedCrossRefGoogle Scholar
  9. 9.
    de Silva AP, Gunaratne H, Gunnlaugsson T, Huxley A, McCoy C, Rademacher J, Rice T (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566PubMedCrossRefGoogle Scholar
  10. 10.
    Kossiakoff AA, Koide S (2008) Understanding mechanisms governing protein-protein interactions from synthetic binding interfaces. Curr Opin Struct Biol 18:499–506PubMedCrossRefGoogle Scholar
  11. 11.
    Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108:1225–1244PubMedCrossRefGoogle Scholar
  12. 12.
    Choulier L, Enander K (2010) Environmentally sensitive fluorescent sensors based on synthetic peptides. Sensors 10:3126–3144PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Duke RM, Veale EB, Pfeffer FM, Kruger PE, Gunnlaugsson T (2010) Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem Soc Rev 39:3936–3953PubMedCrossRefGoogle Scholar
  14. 14.
    Cohen BE, McAnaney TB, Park ES, Jan YN, Boxer SG, Jan LY (2002) Probing protein electrostatics with a synthetic fluorescent amino acid. Science 296:1700–1703PubMedCrossRefGoogle Scholar
  15. 15.
    Vazquez ME, Blanco-Canosa JB, Imperiali B (2005) Photophysics and biological applications of the environment-sensitive fluorophore 6-N,N-dimethylamino-2,3-naphthalimide. J Am Chem Soc 127:1300–1306PubMedCrossRefGoogle Scholar
  16. 16.
    Vazquez ME, Rothman DM, Imperiali B (2004) A new environment-sensitive fluorescent amino acid for Fmoc-based solid phase peptide synthesis. Org Biomol Chem 2:1965–1966CrossRefGoogle Scholar
  17. 17.
    Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, WeinheimGoogle Scholar
  18. 18.
    Malumbres M, Carnero A (2003) Cell cycle deregulation: a common motif in cancer. Prog Cell Cycle Res 5:5–18PubMedGoogle Scholar
  19. 19.
    Ball KL, Lain S, Fâhraeus R, Smythe C, Lane DP (1996) Cell-cycle arrest and inhibition of Cdk4 activity by small peptides based on the carboxy-terminal domain of p21WAF1. Curr Biol 7:71–80CrossRefGoogle Scholar
  20. 20.
    Mendoza N, Fong S, Marsters J, Koeppen H, Schwall R, Wickramasinghe D (2003) Selective cyclin-dependent kinase 2/cyclin A antagonists that differ from ATP site inhibitors block tumor growth. Cancer Res 63:1020–1024PubMedGoogle Scholar
  21. 21.
    Pazos E, Torrecilla D, Vázquez LM, Castedo L, Mascareñas JL, Vidal A, Vazquez ME (2008) Cyclin A probes by means of intermolecular sensitization of terbium-chelating peptides. J Am Chem Soc 130:9652–9653PubMedCrossRefGoogle Scholar
  22. 22.
    Pazos E, Pérez M, Gutiérrez-de-Terán H, Orzáez M, Guevara T, Mascareñas JL, Vazquez ME (2011) Rational design of a cyclin A fluorescent peptide sensor. Org Biomol Chem 9:7629–7632PubMedCrossRefGoogle Scholar
  23. 23.
    Kontopidis G, Andrews MJI, McInnes C, Cowan A, Powers H, Innes L, Plater A, Griffiths G, Paterson D, Zheleva DI, Lane DP, Green S, Walkinshaw MD, Fischer PM (2003) Insights into cyclin groove recognition: complex crystal structures and inhibitor design through ligand exchange. Structure 11:1537–1546PubMedCrossRefGoogle Scholar
  24. 24.
    Chanvorachote B, Nimmannit U, Muangsiri W, Kirsch L (2009) An evaluation of a fluorometric method for determining binding parameters of drug–carrier complexes using mathematical models based on total drug concentration. J Fluoresc 19:747–753PubMedCrossRefGoogle Scholar
  25. 25.
    Thordarson P (2011) Determining association constants from titration experiments in supramolecular chemistry. Chem Soc Rev 40:1305–1323PubMedCrossRefGoogle Scholar
  26. 26.
    Wang ZX (1995) An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule. FEBS Lett 360:111–114PubMedCrossRefGoogle Scholar
  27. 27.
    Wang ZX, Jiang RF (1996) A novel two-site binding equation presented in terms of the total ligand concentration. FEBS Lett 392:245–249PubMedCrossRefGoogle Scholar
  28. 28.
    Hancock WS, Battersby JE (1976) A new micro-test for detection of incomplete coupling reactions in solid-phase peptide-synthesis using 2,4,6-trinitrobenzenesulphonic acid. Anal Biochem 71:260–264PubMedCrossRefGoogle Scholar
  29. 29.
    Hancock WS (2000) Fmoc solid phase peptide synthesis: a practical approach. Oxford University Press, OxfordGoogle Scholar
  30. 30.
    Wang X, Fu M, Ren J, Qu X (2007) Evaluation of different culture conditions for high-level soluble expression of human cyclin A2 with pET vector in BL21 (DE3) and spectroscopic characterization of its inclusion body structure. Protein Expr Purif 56:27–34PubMedCrossRefGoogle Scholar
  31. 31.
    Roehrl MHA, Wang JY, Wagner G (2004) A general framework for development and data analysis of competitive high-throughput screens for small-molecule inhibitors of protein-protein interactions by fluorescence polarization. Biochemistry 43:16056–16066PubMedCrossRefGoogle Scholar
  32. 32.
    Eftink MR (1997) Fluorescence methods for studying equilibrium macromolecule-ligand interactions. Methods Enzymol 278:221–257PubMedCrossRefGoogle Scholar
  33. 33.
    Shi G, Gong Y, Savchenko A, Zeikus JG, Xiao B, Ji X, Yan H (2000) Dissecting the nucleotide binding properties of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase with fluorescent 3’(2)’-o-anthraniloyladenosine 5’-triphosphate. Biochim Biophys Acta 1478:289–299PubMedCrossRefGoogle Scholar
  34. 34.
    Zheleva DI, Mcinnes C, Gavine A-L, Zhelev NZ, Fischer PM, Lane DP (2002) Highly potent p21(WAF1)-derived peptide inhibitors of CDK-mediated pRb phosphorylation: delineation and structural insight into their interactions with cyclin A. J Pept Res 60:257–270PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2016

Authors and Affiliations

  • Elena Pazos
    • 1
  • José L. Mascareñas
    • 1
  • M. Eugenio Vázquez
    • 1
  1. 1.Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química OrgánicaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations