Skip to main content

Virus-Mediated Expression of DREADDs for In Vivo Metabolic Studies

  • Protocol
G Protein-Coupled Receptors in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1335))

Abstract

During the past few years, CNO-sensitive designer G protein-coupled receptors (GPCRs) known as DREADDs (designer receptors exclusively activated by designer drugs) have emerged as powerful new tools for the study of GPCR physiology. In this chapter, we present protocols employing adeno-associated viruses (AAVs) to express a Gq-coupled DREADD (Dq) in two metabolically important cell types, AgRP neurons of the hypothalamus and hepatocytes of the liver. We also provide examples dealing with the metabolic analysis of the Dq mutant mice after administration of CNO in vivo. The approaches described in this chapter can be applied to other members of the DREADD family and, of course, different cell types. It is likely that the use of DREADD technology will identify physiologically important signaling pathways that can be targeted for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Regard JB, Sato IT, Coughlin SR (2008) Anatomical profiling of G protein-coupled receptor expression. Cell 135:561–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104:5163–5168

    Article  PubMed Central  PubMed  Google Scholar 

  3. Wess J, Nakajima K, Jain S (2013) Novel designer receptors to probe GPCR signaling and physiology. Trends Pharmacol Sci 34:385–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Urban DJ, Roth BL (2014) DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol. doi:10.1146/annurev-pharmtox-010814-124803

    PubMed  Google Scholar 

  5. Guettier JM, Gautam D, Scarselli M, Ruiz de Azua I, Li JH, Rosemond E, Ma X, Gonzalez FJ, Armbruster BN, Lu H, Roth BL, Wess J (2009) A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A 106:19197–19202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16:1073–1080

    Article  CAS  PubMed  Google Scholar 

  7. Aponte Y, Atasoy D, Sternson SM (2011) AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 14:351–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121:1424–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Cansell C, Denis RG, Joly-Amado A, Castel J, Luquet S (2012) Arcuate AgRP neurons and the regulation of energy balance. Front Endocrinol (Lausanne) 3:169, eCollection 2012

    CAS  Google Scholar 

  10. Krashes MJ, Shah BP, Koda S, Lowell BB (2013) Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab 18:588–595

    Article  CAS  PubMed  Google Scholar 

  11. Atasoy D, Betley JN, Su HH, Sternson SM (2012) Deconstruction of a neural circuit for hunger. Nature 488:172–177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE, Garfield AS, Vong L, Pei H, Watabe-Uchida M, Uchida N et al (2014) An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507:238–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Atasoy D, Aponte Y, Su HH, Sternson SM (2008) A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci 28:7025–7030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Grieger JC, Choi VW, Samulski RJ (2006) Production and characterization of adeno-associated viral vectors. Nat Protocols 1:1412–1428

    Article  CAS  PubMed  Google Scholar 

  16. Tong Q, Ye CP, Jones JE, Elmquist JK, Lowell BB (2008) Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat Neurosci 11:998–1000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lin HV, Accili D (2011) Hormonal regulation of hepatic glucose production in health and disease. Cell Metab 14:9–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Nakajima K, Wess J (2012) Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol Pharmacol 82:575–582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Li JH, Jain S, McMillin SM, Cui Y, Gautam D, Sakamoto W, Lu H, Jou W, McGuinness OP, Gavrilova O, Wess J (2013) A novel experimental strategy to assess the metabolic effects of selective activation of a Gq-coupled receptor in hepatocytes in vivo. Endocrinology 154:3539–3551

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH. We thank Ms. Yinghong Cui and Mr. Matthew Stern for excellent technical support. We are also very grateful to the following three individuals who generously shared their expertise and many valuable reagents with us: Dr. Bryan L. Roth (The University of North Carolina, Chapel Hill, NC), Dr. Michael Krashes (NIDDK, NIH, Bethesda, MD), and Dr. Morris J. Birnbaum (The University of Pennsylvania, Philadelphia, PA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Wess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rossi, M., Cui, Z., Nakajima, Ki., Hu, J., Zhu, L., Wess, J. (2015). Virus-Mediated Expression of DREADDs for In Vivo Metabolic Studies. In: Filizola, M. (eds) G Protein-Coupled Receptors in Drug Discovery. Methods in Molecular Biology, vol 1335. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2914-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2914-6_14

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2913-9

  • Online ISBN: 978-1-4939-2914-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics