Skip to main content

Electrophoretic Mobility Shift Assay Using Radiolabeled DNA Probes

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1334))

Abstract

Electrophoretic mobility shift assays (EMSA) have proven their usefulness for studying interactions between biological molecules. In the present protocol, a purified protein of interest is mixed with a 5′-end radiolabeled DNA probe. The bound complexes are separated by electrophoretic migration through a polyacrylamide gel and detected with a phosphorimager. The applications of EMSA are diverse, from thermodynamic and kinetic analyses to observation of bending and other conformational changes, stoichiometric inferences, or insights into cooperative protein binding.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

APS:

Ammonium persulfate

ATP:

Adenosine triphosphate

Bis-Tris:

1,3-bis(tris(hydroxymethyl)methylamino)propane

BSA:

Bovine serum albumin

cAMP:

3′-5′-cyclic adenosine monophosphate

CAP:

E. coli cAMP receptor protein

DNA:

Deoxyribonucleic acid

DTT:

Dithiothreitol

EDTA:

Ethylenediamine tetraacetic acid

EMSA:

Electrophoretic mobility shift assay

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

MOPS:

3-(N-morpholino)propanesulfonic acid

PMSF:

Phenylmethylsulfonyl fluoride

SELEX:

Systematic evolution of ligands by exponential enrichment

SDS-PAGE:

Polyacrylamide gel electrophoresis carried in presence of sodium dodecyl sulfate

TAE:

Tris-acetate-EDTA

TBE:

Tris-borate-EDTA

TE:

Tris-EDTA

TEMED:

N,N,N′,N′-tetramethylethylenediamine

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9:3047–3060

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nat Protoc. doi:10.1038/nprot.2007.249

    PubMed Central  PubMed  Google Scholar 

  3. Lane D, Prentki P, Chandler M (1992) Use of gel retardation to analyze protein-nucleic acid interactions. Microbiol Rev 56:509–528

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Oxenburgh MS, Snoswell AM (1965) Use of Streptomycin in the Separation of Nucleic Acids from Protein in a Bacterial Extract. Nature. doi:10.1038/2071416a0

    PubMed  Google Scholar 

  5. Cann JR (1989) Phenomenological theory of gel electrophoresis of protein-nucleic acid complexes. J Biol Chem 264:17032–17040

    CAS  PubMed  Google Scholar 

  6. Vossen KM, Fried MG (1997) Sequestration stabilizes lac repressor-DNA complexes during gel electrophoresis. Anal Biochem 245:85–92

    Article  CAS  PubMed  Google Scholar 

  7. Fried M, Crothers DM (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9:6505–6525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hope IA, Struhl K (1987) GCN4, a eukaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO J 6:2781–2784

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Kimsey HH, Waldor MK (2003) The CTX Repressor RstR Binds DNA Cooperatively to Form Tetrameric Repressor-Operator Complexes. J Biol Chem 279:2640–2647

    Article  PubMed  Google Scholar 

  10. Fried MG, Daugherty MA (1998) Electrophoretic analysis of multiple protein-DNA interactions. Electrophoresis 19:1247–1253

    Article  CAS  PubMed  Google Scholar 

  11. Orchard K, May GE (1993) An EMSA-based method for determining the molecular weight of a protein–DNA complex. Nucleic Acids Res 21:3335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Carey MF, Peterson CL, Smale ST (2013) Electrophoretic mobility-shift assays. Cold Spring Harb Protoc. doi:10.1101/pdb.prot075861

    Google Scholar 

  13. Haran TE, Mohanty U (2009) The unique structure of A-tracts and intrinsic DNA bending. Q Rev Biophys. doi:10.1017/S0033583509004752

    PubMed  Google Scholar 

  14. Koo HS, Wu HM, Crothers DM (1986) DNA bending at adenine. thymine tracts. Nature 320:501–506

    Article  CAS  PubMed  Google Scholar 

  15. Zinkel SS, Crothers DM (1987) DNA bend direction by phase sensitive detection. Nature 328:178–181

    Article  CAS  PubMed  Google Scholar 

  16. Kim J, Zwieb C, Wu C, Adhya S (1989) Bending of DNA by gene-regulatory proteins: construction and use of a DNA bending vector. Gene 85:15–23

    Article  CAS  PubMed  Google Scholar 

  17. Wu HM, Crothers DM (1984) The locus of sequence-directed and protein-induced DNA bending. Nature 308:509–513

    Article  CAS  PubMed  Google Scholar 

  18. Griffith J, Hochschild A, Ptashne M (1986) DNA loops induced by cooperative binding of lambda repressor. Nature 322:750–752

    Article  CAS  PubMed  Google Scholar 

  19. Liu-Johnson HN, Gartenberg MR, Crothers DM (1986) The DNA binding domain and bending angle of E. coli CAP protein. Cell 47:995–1005

    Article  CAS  PubMed  Google Scholar 

  20. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  21. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  22. Lee Y-Y, Barker CS, Matsumura P et al (2011) Refining the Binding of the Escherichia coli Flagellar Master Regulator, FlhD4C2, on a Base-Specific Level. J Bacteriol 193:4057–4068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX–a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403

    Article  CAS  PubMed  Google Scholar 

  24. Sambrook J, Russel DW (2001) Molecular cloning : A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  25. Fried MG, Crothers DM (1984) Equilibrium studies of the cyclic AMP receptor protein-DNA interaction. J Mol Biol 172:241–262

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Fonds Québécois de la recherche sur la nature et les technologies (D.P.L.) and a Discovery Grant and Discovery Acceleration Supplement from the Natural Sciences and Engineering Council of Canada (V.B.). V.B. holds a Canada Research Chair in molecular bacterial genetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Burrus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Poulin-Laprade, D., Burrus, V. (2015). Electrophoretic Mobility Shift Assay Using Radiolabeled DNA Probes. In: Leblanc, B., Rodrigue, S. (eds) DNA-Protein Interactions. Methods in Molecular Biology, vol 1334. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2877-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2877-4_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2876-7

  • Online ISBN: 978-1-4939-2877-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics