Skip to main content

Temporary Conversion of Protein Amino Groups to Azides: A Synthetic Strategy for Glycoconjugate Vaccines

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1331))

Abstract

Conjugation of synthetic oligosaccharides and native polysaccharides to proteins is an important tool in glycobiology to create vaccines and antigens to screen lectins, toxins, and antibodies. A novel approach to potentiate and profile the immune response to vaccines involves targeting antigens directly to dendritic cells (DCs), the key cells engaged in the immunization process. Inclusion of a carbohydrate ligand recognized by C-type lectins expressed on their cell surface ensures targeting of vaccines to DCs and improved immunological responses. Here we describe a strategy that permits three sequential orthogonal conjugation reactions to prepare glycoconjugates and apply them to the synthesis of a conjugate vaccine that is targeted for uptake by DCs. The carrier protein is treated with an azo-transfer reagent to convert accessible amino groups to azide and then amide bond formation via reaction with carboxylic acid side chains is used to attach amino tether groups of a ligand to the protein. Azide-alkyne Huisgen cycloaddition conjugation, “click chemistry” is used to attach a second ligand equipped with a propargyl group or an analogous terminal alkyne, and following reduction of protein azide groups back to amine, these amino acid side chains can be subjected to amide formation such as reaction with succinimide esters or homobifunctional coupling reagents such as dialkyl squarate.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lipinski T, Wu X, Sadowska J et al (2012) A trisaccharide conjugate vaccine induces high titer β-mannan specific antibodies that aid clearance of Candida albicans in immunocompromised rabbits. Vaccine 30:6263–6269

    Article  CAS  PubMed  Google Scholar 

  2. Lipinski T, Kitov P, Szpacenko A et al (2011) Synthesis and immunogenicity of a glycopolymer conjugate. Bioconjug Chem 22:274–281

    Article  CAS  PubMed  Google Scholar 

  3. Jiang J, Swiggard WJ, Heufler C et al (1995) The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375:151–155

    Article  CAS  PubMed  Google Scholar 

  4. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

  5. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    Article  CAS  PubMed  Google Scholar 

  6. van Kooyk Y, Rabinovich GA (2008) Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol 9:593–601

    Article  PubMed  Google Scholar 

  7. Geijtenbeek TB, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9:465–479

    Article  CAS  PubMed  Google Scholar 

  8. Unger WW, van Kooyk Y (2011) “Dressed for Success” C-type lectin receptors for delivery of glyco-vaccines to dendritic cells. Curr Opin Immunol 23:131–137

    Article  CAS  PubMed  Google Scholar 

  9. van Kooyk Y, Unger WW, Fehres CM et al (2013) Glycan-based DC-SIGN targeting vaccines to enhance antigen cross-presentation. Mol Immunol 55:143–145

    Article  PubMed  Google Scholar 

  10. Fehres CM, Unger WW, Garcia-Vallejo JJ et al (2014) Understanding the biology of antigen cross-presentation for the design of vaccines against cancer. Front Immunol 5:149

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lipinski T, Fitieh A, St. Pierre J et al (2013) Enhanced immunogenicity of a tricomponent mannan tetanus toxoid conjugate vaccine targeted to DCs via Dectin-1 by incorporating β-glucan. J Immunol 190:4116–4128

    Article  CAS  PubMed  Google Scholar 

  12. Lönngren J, Goldstein IJ, Niederhuber JE (1976) Aldonate coupling, a simple procedure for the preparation of carbohydrate-protein conjugates for studies of carbohydrate-binding proteins. Arch Biochem Biophys 175:661–669

    Article  PubMed  Google Scholar 

  13. Svenson SB, Lindberg AA (1979) Coupling of acid labile Salmonella specific oligosaccharides to macromolecular carriers. J Immunol Methods 25:323–335

    Article  CAS  PubMed  Google Scholar 

  14. Goddard-Borger ED, Stick RV (2007) An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. Org Lett 9:3797–3800, see also Additions and Corrections to the above paper (2011) Org Lett 13, 2514–2514

    Article  CAS  PubMed  Google Scholar 

  15. Fischer N, Goddard-Borger ED, Greiner R et al (2012) Sensitivities of some imidazole-1-sulfonyl azide salts. J Org Chem 77:1760–1764

    Article  CAS  PubMed  Google Scholar 

  16. Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064

    Article  CAS  PubMed  Google Scholar 

  17. Wang Q, Chan TR, Hilgraf R et al (2003) Bioconjugation by copper (I)-catalyzed azide alkyne [3 + 2] cycloaddition. J Am Chem Soc 125:3192–3193

    Article  CAS  PubMed  Google Scholar 

  18. Wu X, Bundle DR (2005) Synthesis of glycoconjugate vaccines for Candida albicans using novel linker methodology. J Org Chem 70:7381–7388

    Article  CAS  PubMed  Google Scholar 

  19. Kunishima M, Kawachi C, Iwasaki F et al (1999) Synthesis and characterization of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride. Tetrahedron Lett 40:5327–5330

    Article  CAS  Google Scholar 

  20. Sen Gupta S, Kuzelka J, Singh P et al (2005) Accelerated bioorthogonal conjugation: a practical method for the Ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconjug Chem 16:1572–1579

    Article  CAS  PubMed  Google Scholar 

  21. Habeeb AFS (1966) Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem 14:328–336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The research was made possible by grants awarded to D. R. B.; a Discovery grant from the Natural Science and Engineering Research Council of Canada and support from the Alberta Innovates Centers Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Bundle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lipinski, T., Bundle, D.R. (2015). Temporary Conversion of Protein Amino Groups to Azides: A Synthetic Strategy for Glycoconjugate Vaccines. In: Lepenies, B. (eds) Carbohydrate-Based Vaccines. Methods in Molecular Biology, vol 1331. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2874-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2874-3_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2873-6

  • Online ISBN: 978-1-4939-2874-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics