Generation of Monoclonal Antibodies against Defined Oligosaccharide Antigens

  • Felix Broecker
  • Chakkumkal AnishEmail author
  • Peter H. SeebergerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1331)


Unique carbohydrate antigens are expressed on the surface of various pathogens, including bacteria, parasites, and viruses, and aberrant glycosylation is a frequent feature of cancer cells. Antibodies recognizing such carbohydrate antigens may be used for the specific detection of potentially harmful cells, immunohistochemistry, and diagnostic and therapeutic applications. The generation of specific and strongly binding antibodies against defined carbohydrate epitopes is challenging, since isolated carbohydrates often suffer from low purity, usually have limited immunogenicity, and induce antibodies of low affinity. We describe a protocol to generate highly affine monoclonal antibodies (mAbs) against pure and defined synthetic carbohydrate antigens. First, an oligosaccharide is covalently coupled to an immunogenic carrier protein to obtain a glycoconjugate. This glycoconjugate is used to raise oligosaccharide-specific antibodies in mice, and splenocytes are fused with myeloma cells to form hybridomas. Hybridoma clones producing oligosaccharide-specific mAbs are selected by glycan microarray screening. Selected clones are expanded and mAbs are purified from the cell culture supernatant. This protocol is suitable to procure carbohydrate-specific mAbs of high specificity, selectivity, and affinity that may be useful for a variety of biochemical and medical applications.

Key words

Antigen Carbohydrate Epitope Glycan Glycoconjugate Hybridoma mAb Monoclonal antibody Oligosaccharide Pathogen detection 



We thank Dr. You Yang for providing the Kdo antigen and Pfénex, Inc. for providing CRM197 at a reduced price for academic institutions. We acknowledge careful and critical reviewing of the manuscript by Andreas Geissner, Anika Reinhardt, Benjamin Schumann, and Stefan Matthies. We thank the Max Planck Society, the Körber Foundation (Körber Prize to PHS), and the German Federal Ministry of Education and Research (grant No. 0315447) for generous financial support.


  1. 1.
    Tamborrini M, Werz DB, Frey J et al (2006) Anti-carbohydrate antibodies for the detection of anthrax spores. Angew Chem Int Ed Engl 45:6581–6582PubMedCrossRefGoogle Scholar
  2. 2.
    Tamborrini M, Oberli MA, Werz DB et al (2009) Immuno-detection of anthrose containing tetrasaccharide in the exosporium of Bacillus anthracis and Bacillus cereus strains. J Appl Microbiol 106:1618–1628PubMedCrossRefGoogle Scholar
  3. 3.
    Tamborrini M, Holzer M, Seeberger PH et al (2010) Anthrax spore detection by a luminex assay based on monoclonal antibodies that recognize anthrose-containing oligosaccharides. Clin Vaccine Immunol 17:1446–1451PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Anish C, Guo X, Wahlbrink A et al (2013) Plague detection by anti-carbohydrate antibodies. Angew Chem Int Ed Engl 52:9524–9528PubMedCrossRefGoogle Scholar
  5. 5.
    Gao C, Liu Y, Zhang H et al (2014) Carbohydrate sequence of the prostate cancer-associated antigen F77 assigned by a mucin O-glycome designer array. J Biol Chem 289:16462–16477PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Lee G, Cheung AP, Ge B et al (2012) CA215 and GnRH receptor as targets for cancer therapy. Cancer Immunol Immunother 61:1805–1817PubMedCrossRefGoogle Scholar
  7. 7.
    Wang LX (2013) Synthetic carbohydrate antigens for HIV vaccine design. Curr Opin Chem Biol 17:997–1005PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Lepenies B, Seeberger PH (2010) The promise of glycomics, glycan arrays and carbohydrate-based vaccines. Immunopharmacol Immunotoxicol 32:196–207PubMedCrossRefGoogle Scholar
  9. 9.
    Oberli MA, Tamborrini M, Tsai YH et al (2010) Molecular analysis of carbohydrate-antibody interactions: case study using a Bacillus anthracis tetrasaccharide. J Am Chem Soc 132:10239–10241PubMedCrossRefGoogle Scholar
  10. 10.
    Broecker F, Aretz J, Yang Y et al (2014) Epitope recognition of antibodies against a Yersinia pestis lipopolysaccharide trisaccharide component. ACS Chem Biol 9:867–873PubMedCrossRefGoogle Scholar
  11. 11.
    Avery OT, Goebel WF (1931) Chemo-immunological studies on conjugated carbohydrate-proteins: V. The immunological specificity of an antigen prepared by combining the capsular polysaccharide of type III pneumococcus with foreign protein. J Exp Med 54:437–447PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Jorge P, Abdul-Wajid A (1995) Sialyl-Tn-KLH, glycoconjugate analysis and stability by high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Glycobiology 5:759–764PubMedCrossRefGoogle Scholar
  13. 13.
    Borrow R, Dagan R, Zepp F et al (2011) Glycoconjugate vaccines and immune interactions, and implications for vaccination schedules. Expert Rev Vaccines 10:1621–1631PubMedCrossRefGoogle Scholar
  14. 14.
    Oberli MA, Hecht ML, Bindschädler P et al (2011) A possible oligosaccharide-conjugate vaccine candidate for Clostridium difficile is antigenic and immunogenic. Chem Biol 18:580–588PubMedCrossRefGoogle Scholar
  15. 15.
    Anish C, Martin CE, Wahlbrink A et al (2013) Immunogenicity and diagnostic potential of synthetic antigenic cell surface glycans of Leishmania. ACS Chem Biol 8:2412–2422PubMedCrossRefGoogle Scholar
  16. 16.
    Martin CE, Broecker F, Oberli MA et al (2013) Immunological evaluation of a synthetic Clostridium difficile oligosaccharide conjugate vaccine candidate and identification of a minimal epitope. J Am Chem Soc 135:9713–9722PubMedCrossRefGoogle Scholar
  17. 17.
    Eriksson M, Serna S, Maglinao M et al (2014) Biological evaluation of multivalent lewis X-MGL-1 interactions. Chembiochem 15:844–851PubMedCrossRefGoogle Scholar
  18. 18.
    Wenzel T, Sparbier K, Mieruch T et al (2006) 2,5-Dihydroxyacetophenone: a matrix for highly sensitive matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of proteins using manual and automated preparation techniques. Rapid Commun Mass Spectrom 20:785–789PubMedCrossRefGoogle Scholar
  19. 19.
    Yang Y, Oishi S, Martin CE et al (2013) Diversity-oriented synthesis of inner core oligosaccharides of the lipopolysaccharide of pathogenic Gram-negative bacteria. J Am Chem Soc 135:6262–6271PubMedCrossRefGoogle Scholar
  20. 20.
    Mechetner E (2007) Development and characterization of mouse hybridomas. Methods Mol Biol 378:1–13PubMedCrossRefGoogle Scholar
  21. 21.
    Reeves JP, Reeves PA (2001) Removal of lymphoid organs. Curr Protoc Immunol Chapter 1, Unit 1.9Google Scholar
  22. 22.
    Geissner A, Anish C, Seeberger PH (2014) Glycan arrays as tools for infectious disease research. Curr Opin Chem Biol 18:38–45PubMedCrossRefGoogle Scholar
  23. 23.
    Moelling K, Broecker F, Kerrigan JE (2014) RNase H: specificity, mechanisms of action, and antiviral target. Methods Mol Biol 1087:71–84PubMedCrossRefGoogle Scholar
  24. 24.
    Miron T, Wilchek M (1982) A spectrophotometric assay for soluble and immobilized N-hydroxysuccinimide esters. Anal Biochem 126:433–435PubMedCrossRefGoogle Scholar
  25. 25.
    Diehl KH, Hull R, Morton D, European Federation of Pharmaceutical Industries Association and European Centre for the Validation of Alternative Methods et al (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21:15–23PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of BiomolecularSystemsMax Planck Institute of Colloids and InterfacesPotsdamGermany
  2. 2.Freie Universität Berlin, Institute of Chemistry and BiochemistryBerlinGermany
  3. 3.Bacterial Vaccines Discovery and Early DevelopmentJanssen Pharmaceuticals (Johnson & Johnson)LeidenThe Netherlands
  4. 4.Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesPotsdamGermany

Personalised recommendations