Skip to main content

Glycans as Vaccine Antigens and Adjuvants: Immunological Considerations

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1331))

Abstract

Carbohydrates can be found on the cell surface of nearly every cell ranging from bacteria to fungi right up to mammalian cells. Carbohydrates and their interactions with carbohydrate-binding proteins play crucial roles in multiple biological processes including immunity, homeostasis, cellular communication, cell migration, and the regulation of serum glycoprotein levels. In the last decades, the interest in exploiting the biological activity of glycans as vaccine components has considerably increased. On the one hand, carbohydrates display epitopes to generate protective antibodies against pathogen-derived cell wall structures and on the other hand, glycans have the potential to stimulate the immune system; thus they can act as potent vaccine adjuvants.

An effective vaccine consists of two major components, the vaccine antigen and an adjuvant. The vaccine antigen is an original or modified part of the pathogen that causes the disease. The immune response triggered by vaccination should induce antigen-specific plasma cells secreting protective antibodies as well as the development of memory T and B cells. Carbohydrate structures on pathogens represent an important class of antigens that can activate B cells to produce protective anti-carbohydrate antibodies in adults. A major breakthrough in vaccine development was the design of conjugate vaccines that evoke protective antibody responses against encapsulated bacteria strains such as Haemophilus influenzae, Streptococcus pneumoniae, or Neisseria meningitidis in adults, but also in young children. The first part of this chapter focuses on immune responses triggered by carbohydrate-based vaccines. The second part of the chapter discusses the immunological mechanisms of carbohydrate-based adjuvants to increase the immunogenicity of vaccines.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Whitfield C, Trent MS (2014) Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem 83:99–128

    Article  CAS  PubMed  Google Scholar 

  2. Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315

    Article  CAS  PubMed  Google Scholar 

  3. Marino K, Bones J, Kattla JJ et al (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol 6:713–723

    Article  CAS  PubMed  Google Scholar 

  4. Kadioglu A, Weiser JN, Paton JC et al (2008) The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6:288–301

    Article  CAS  PubMed  Google Scholar 

  5. Avci FY, Kasper DL (2010) How bacterial carbohydrates influence the adaptive immune system. Annu Rev Immunol 28:107–130

    Article  CAS  PubMed  Google Scholar 

  6. Cobb BA, Kasper DL (2005) Coming of age: carbohydrates and immunity. Eur J Immunol 35:352–356

    Article  CAS  PubMed  Google Scholar 

  7. Francis T, Tillett WS (1930) Cutaneous reactions in pneumonia. The development of antibodies following the intradermal injection of type-specific polysaccharide. J Exp Med 52:573–585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Schumann B, Anish C, Pereira CL et al (2014) Chemical biology approaches to designing defined carbohydrate vaccines. Chem Biol 21:38–50

    Article  PubMed  Google Scholar 

  9. Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9:4–9

    Article  CAS  PubMed  Google Scholar 

  10. Palm NW, Medzhitov R (2009) Pattern recognition receptors and control of adaptive immunity. Immunol Rev 227:221–233

    Article  CAS  PubMed  Google Scholar 

  11. Cruvinel WD, Mesquita D, Araujo JAP et al (2010) Immune system—Part I Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response. Rev Bras Reumatol 50:434–461

    Google Scholar 

  12. Kapsenberg ML (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3:984–993

    Article  CAS  PubMed  Google Scholar 

  13. Romagnani S (2000) T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol 85:9–21

    Article  CAS  PubMed  Google Scholar 

  14. Zhu J, Yamane H, Paul WE (2010) Differentiation of Effector CD4 T Cell Populations. Annu Rev Immunol 28:445–489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. O’Connor W, Zenewicz LA, Flavell RA (2010) The dual nature of TH17 cells: shifting the focus to function. Nat Immunol 11:471–476

    Article  PubMed  Google Scholar 

  16. Singh RP, Hasan S, Sharma S et al (2014) Th17 cells in inflammation and autoimmunity. Autoimmun Rev 13:1174–1181

    Article  CAS  PubMed  Google Scholar 

  17. Crotty S (2011) Follicular Helper CD4 T Cells (TFH). Annu Rev Immunol 29:621–663

    Article  CAS  PubMed  Google Scholar 

  18. Parker DC (1993) T cell-dependent B cell activation. Annu Rev Immunol 11:331–360

    Article  CAS  PubMed  Google Scholar 

  19. Murphy K, Travers P, Walport M, Janeway CA (2012) Janeway’s immunobiology. Garland Science, New York

    Google Scholar 

  20. Guttormsen H-K, Sharpe AH, Chandraker AK et al (1999) Cognate stimulatory B-cell–T-cell interactions are critical for T-cell help recruited by glycoconjugate vaccines. Infect Immun 67:6375–6384

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Mond JJ, Lees A, Snapper CM (1995) T cell-independent antigens type 2. Annu Rev Immunol 13:655–692

    Article  CAS  PubMed  Google Scholar 

  22. Landers C, Chelvarajan RL, Bondada S (2005) The role of B cells and accessory cells in the neonatal response to TI-2 antigens. Immunol Res 31:25–36

    Article  CAS  PubMed  Google Scholar 

  23. Weintraub A (2003) Immunology of bacterial polysaccharide antigens. Carbohydr Res 338:2539–2547

    Article  CAS  PubMed  Google Scholar 

  24. Vos Q, Lees A, Wu ZQ et al (2000) B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol Rev 176:154–170

    Article  CAS  PubMed  Google Scholar 

  25. López-Herrera G, Vargas-Hernández A, González-Serrano ME et al (2014) Bruton’s tyrosine kinase—an integral protein of B cell development that also has an essential role in the innate immune system. J Leukoc Biol 95:243–250

    Article  PubMed  Google Scholar 

  26. Bondada S, Chelvarajan RL (2004) Neonatal immunity to polysaccharide antigens: role of B cells versus macrophages. Nat Rev Immunol. doi:10.1038/nri1394-c1

    Google Scholar 

  27. Velez CD, Lewis CJ, Kasper DL et al (2009) Type I Streptococcus pneumoniae carbohydrate utilizes a nitric oxide and MHC II-dependent pathway for antigen presentation. Immunology 127:73–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Avci FY, Li X, Tsuji M et al (2013) Carbohydrates and T cells: a sweet twosome. Semin Immunol 25:146–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Vinuesa CG, Chang P-P (2013) Innate B cell helpers reveal novel types of antibody responses. Nat Immunol 14:119–126

    Article  CAS  PubMed  Google Scholar 

  30. Alugupalli KR, Akira S, Lien E et al (2007) MyD88- and Bruton’s tyrosine kinase-mediated signals are essential for T cell-independent pathogen-specific IgM responses. J Immunol 178:3740–3749

    Article  CAS  PubMed  Google Scholar 

  31. Dagan R, Poolman J, Siegrist C-A (2010) Glycoconjugate vaccines and immune interference: a review. Vaccine 28:5513–5523

    Article  CAS  PubMed  Google Scholar 

  32. Adamo R, Nilo A, Castagner B et al (2013) Synthetically defined glycoprotein vaccines: current status and future directions. Chem Sci 4:2995–3008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Pobre K, Tashani M, Ridda I et al (2014) Carrier priming or suppression: understanding carrier priming enhancement of anti-polysaccharide antibody response to conjugate vaccines. Vaccine 32:1423–1430

    Article  CAS  PubMed  Google Scholar 

  34. Lucas AH, Apicella MA, Taylor CE (2005) Carbohydrate moieties as vaccine candidates. Clin Infect Dis 41:705–712

    Article  CAS  PubMed  Google Scholar 

  35. Avci FY, Li X, Tsuji M et al (2011) A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat Med 17:1602–1609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kuberan B, Lindhardt RJ (2000) Carbohydrate based vaccines. Curr Org Chem 4:653–677

    Article  CAS  Google Scholar 

  37. Astronomo RD, Burton DR (2010) Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat Rev Drug Discov 9:308–324

    Article  CAS  PubMed  Google Scholar 

  38. Makela PH (2003) Conjugate vaccines-a breakthrough in vaccine development. Southeast Asian J Trop Med Public Health 34:249–253

    PubMed  Google Scholar 

  39. Irving TJ, Blyuss KB, Colijn C et al (2012) Modelling meningococcal meningitis in the African meningitis belt. Epidemiol Infect 140:897–905

    Article  CAS  PubMed  Google Scholar 

  40. Cohn A, Harrison L (2013) Meningococcal vaccines: current issues and future strategies. Drugs 73:1147–1155

    Article  CAS  PubMed  Google Scholar 

  41. Hedari CP, Khinkarly RW, Dbaibo GS (2014) Meningococcal serogroups A, C, W-135, and Y tetanus toxoid conjugate vaccine: a new conjugate vaccine against invasive meningococcal disease. Infect Drug Resist 7:85–99

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Daugla DM, Gami JP, Gamougam K et al (2014) Effect of a serogroup A meningococcal conjugate vaccine (PsA-TT) on serogroup A meningococcal meningitis and carriage in Chad: a community study [corrected]. Lancet 383:40–47

    Article  CAS  PubMed  Google Scholar 

  43. Arguedas A, Soley C, Abdelnour A (2011) Prevenar experience. Vaccine 29:C26–C34

    Article  PubMed  Google Scholar 

  44. Prymula R, Schuerman L (2009) 10-valent pneumococcal nontypeable Haemophilus influenzae PD conjugate vaccine: Synflorix™. Expert Rev Vaccines 8:1479–1500

    Article  CAS  PubMed  Google Scholar 

  45. Gruber WC, Scott DA, Emini EA (2012) Development and clinical evaluation of Prevnar 13, a 13-valent pneumococcal CRM197 conjugate vaccine. Ann NY Acad Sci 1263:15–26

    Article  PubMed  Google Scholar 

  46. Alving CR, Peachman KK, Rao M et al (2012) Adjuvants for human vaccines. Curr Opin Immunol 24:310–315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9:287–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Rappuoli R, Mandl CW, Black S et al (2011) Vaccines for the twenty-first century society. Nat Rev Immunol 11:865–872

    CAS  PubMed  Google Scholar 

  49. De Gregorio E, Tritto E, Rappuoli R (2008) Alum adjuvanticity: unraveling a century old mystery. Eur J Immunol 38:2068–2071

    Article  PubMed  Google Scholar 

  50. Eisenbarth SC, Colegio OR, O’Connor W et al (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126

    Article  CAS  PubMed  Google Scholar 

  51. Dostert C, Ludigs K, Guarda G (2013) Innate and adaptive effects of inflammasomes on T cell responses. Curr Opin Immunol 25:359–365

    Article  CAS  PubMed  Google Scholar 

  52. Mohan T, Verma P, Rao D (2013) Novel adjuvants & delivery vehicles for vaccines development: a road ahead. Indian J Med Res 138:779–795

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Mbow ML, De Gregorio E, Valiante NM et al (2010) New adjuvants for human vaccines. Curr Opin Immunol 22:411–416

    Article  CAS  PubMed  Google Scholar 

  54. Awate S, Babiuk LA, Mutwiri G (2013) Mechanisms of action of adjuvants. Front Immunol. doi: 4 10.3389/fimmu.2013.00114

  55. Duthie MS, Windish HP, Fox CB et al (2011) Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 239:178–196

    Article  CAS  PubMed  Google Scholar 

  56. Lang R, Schoenen H, Desel C (2011) Targeting Syk-Card9-activating C-type lectin receptors by vaccine adjuvants: Findings, implications and open questions. Immunobiology 216:1184–1191

    Article  CAS  PubMed  Google Scholar 

  57. Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  58. Cummings RD, McEver RP (2009) C-type lectins. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor, New York, NY

    Google Scholar 

  59. Sancho D, Reis e Sousa C (2012) Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol 30:491–529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Geijtenbeek TBH, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9:465–479

    Article  CAS  PubMed  Google Scholar 

  61. van Kooyk Y, Geijtenbeek TBH (2003) DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3:697–709

    Article  PubMed  Google Scholar 

  62. Drummond RA, Brown GD (2013) Signalling C-type lectins in antimicrobial immunity. PLoS Pathog 9, e1003417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Lepenies B, Lee J, Sonkaria S (2013) Targeting C-type lectin receptors with multivalent carbohydrate ligands. Adv Drug Deliv Rev 65:1271–1281

    Article  CAS  PubMed  Google Scholar 

  64. Drickamer K (1992) Engineering galactose-binding activity into a C-type mannose-binding protein. Nature 360:183–186

    Article  CAS  PubMed  Google Scholar 

  65. van Kooyk Y, Unger WWJ, Fehres CM et al (2013) Glycan-based DC-SIGN targeting vaccines to enhance antigen cross-presentation. Mol Immunol 55:143–145

    Article  PubMed  Google Scholar 

  66. Miyake Y, Toyonaga K, Mori D et al (2013) C-type lectin MCL is an FcRγ-coupled receptor that mediates the adjuvanticity of mycobacterial cord factor. Immunity 38:1050–1062

    Article  CAS  PubMed  Google Scholar 

  67. Carvalho A, Giovannini G, De Luca A et al (2012) Dectin-1 isoforms contribute to distinct Th1/Th17 cell activation in mucosal candidiasis. Cell Mol Immunol 9:276–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Petrovsky N, Cooper PD (2011) Carbohydrate-based immune adjuvants. Expert Rev Vaccines 10:523–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Egli A, Santer D, Barakat K et al (2014) Vaccine adjuvants—understanding molecular mechanisms to improve vaccines. Swiss Med Wkly 144:w13940

    PubMed  Google Scholar 

  70. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  71. Zughaier SM (2011) Neisseria meningitidis capsular polysaccharides induce inflammatory responses via TLR2 and TLR4-MD-2. J Leukoc Biol 89:469–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  CAS  PubMed  Google Scholar 

  73. Park BS, Lee J-O (2013) Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med 45, e66

    Article  PubMed Central  PubMed  Google Scholar 

  74. Petrovsky N, Aguilar JC (2004) Vaccine adjuvants: current state and future trends. Immunol Cell Biol 82:488–496

    Article  CAS  PubMed  Google Scholar 

  75. Gordon DL, Sajkov D, Woodman RJ et al (2012) Randomized clinical trial of immunogenicity and safety of a recombinant H1N1/2009 pandemic influenza vaccine containing Advax™ polysaccharide adjuvant. Vaccine 30: 5407–5416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Cooper PD, Petrovsky N (2011) Delta inulin: a novel, immunologically active, stable packing structure comprising β-d-[2 → 1] poly(fructo-furanosyl) α-d-glucose polymers. Glycobiology 21:595–606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Lamkanfi M, Malireddi RKS, Kanneganti T-D (2009) Fungal zymosan and mannan activate the cryopyrin inflammasome. J Biol Chem 284:20574–20581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Fernández-Tejada A, Chea EK, George C et al (2014) Development of a minimal saponin vaccine adjuvant based on QS-21. Nat Chem 6:635–643

    Article  PubMed Central  PubMed  Google Scholar 

  79. Marciani DJ (2003) Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov Today 8:934–943

    Article  CAS  PubMed  Google Scholar 

  80. Ragupathi G, Gardner JR, Livingston PO et al (2011) Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer. Expert Rev Vaccines 10:463–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Agnandji ST, Fendel R, Mestré M et al (2011) Induction of plasmodium falciparum-specific CD4+ T cells and memory B cells in Gabonese children vaccinated with RTS, S/AS01(E) and RTS, S/AS02(D). PLoS One 6, e18559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the International Max Planck Research School (IMPRS) on Multiscale Bio-Systems. The authors would like to thank Benjamin Schumann for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephanie Zimmermann or Bernd Lepenies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zimmermann, S., Lepenies, B. (2015). Glycans as Vaccine Antigens and Adjuvants: Immunological Considerations. In: Lepenies, B. (eds) Carbohydrate-Based Vaccines. Methods in Molecular Biology, vol 1331. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2874-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2874-3_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2873-6

  • Online ISBN: 978-1-4939-2874-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics