Skip to main content

Yeast Mitochondria as a Model System to Study the Biogenesis of Bacterial β-Barrel Proteins

  • Protocol
The BAM Complex

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1329))

Abstract

Beta-barrel proteins are found in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. The evolutionary conservation in the biogenesis of these proteins allows mitochondria to assemble bacterial β-barrel proteins in their functional form. In this chapter, we describe exemplarily how the capacity of yeast mitochondria to process the trimeric autotransporter YadA can be used to study the role of bacterial periplasmic chaperones in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paschen SA, Neupert W, Rapaport D (2005) Biogenesis of beta-barrel membrane proteins of mitochondria. Trends Biochem Sci 30:575–582

    Article  CAS  PubMed  Google Scholar 

  2. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    Article  CAS  PubMed  Google Scholar 

  3. Esser C, Ahmadinejad N, Wiegand C et al (2004) A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol 21:1643–1660

    Article  CAS  PubMed  Google Scholar 

  4. Ferbitz L, Maier T, Patzelt H et al (2004) Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431:590–596

    Article  CAS  PubMed  Google Scholar 

  5. Bos MP, Robert V, Tommassen J (2007) Biogenesis of the gram-negative bacterial outer membrane. Annu Rev Microbiol 61:191–214

    Article  CAS  PubMed  Google Scholar 

  6. Bechtluft P, Nouwen N, Tans SJ et al (2010) SecB-a chaperone dedicated to protein translocation. Mol BioSys 6:620–627

    Article  CAS  Google Scholar 

  7. Zimmer J, Nam Y, Rapoport TA (2008) Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455:936–943

    Article  CAS  PubMed  Google Scholar 

  8. De Keyzer J, Van Der Does C, Driessen AJ (2003) The bacterial translocase: a dynamic protein channel complex. Cell Mol Life Sci 60:2034–2052

    Article  PubMed  Google Scholar 

  9. Paetzel M (2013) Structure and mechanism of Escherichia coli type I signal peptidase. Biochim Biophys Acta. Biochim Biophys Acta 1843:1497–1508.

    Google Scholar 

  10. Sklar JG, Wu T, Kahne D et al (2007) Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev 21:2473–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Knowles TJ, Scott-Tucker A, Overduin M et al (2009) Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol 7:206–214

    Article  CAS  PubMed  Google Scholar 

  12. Patel GJ, Behrens-Kneip S, Holst O et al (2009) The periplasmic chaperone Skp facilitates targeting, insertion, and folding of OmpA into lipid membranes with a negative membrane surface potential. Biochemistry 48:10235–10245

    Article  CAS  PubMed  Google Scholar 

  13. Volokhina EB, Grijpstra J, Stork M et al (2011) Role of the periplasmic chaperones Skp, SurA, and DegQ in outer membrane protein biogenesis in Neisseria meningitidis. J Bact 193:1612–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Voulhoux R, Bos MP, Geurtsen J et al (2003) Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262–265

    Article  CAS  PubMed  Google Scholar 

  15. Wu T, Malinverni J, Ruiz N et al (2005) Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121:235–245

    Article  CAS  PubMed  Google Scholar 

  16. Hagan CL, Silhavy TJ, Kahne D (2011) β-Barrel membrane protein assembly by the BAM complex. Annu Rev Biochem 80:189–210

    Article  CAS  PubMed  Google Scholar 

  17. Pfanner N, Wiedemann N, Meisinger C et al (2004) Assembling the mitochondrial outer membrane. Nat Struct Mol Biol 11:1044–1048

    Article  CAS  PubMed  Google Scholar 

  18. Endo T, Yamano K (2009) Multiple pathways for mitochondrial protein traffic. Biol Chem 390:723–730

    Article  CAS  PubMed  Google Scholar 

  19. Paschen SA, Waizenegger T, Stan T et al (2003) Evolutionary conservation of biogenesis of β-barrel membrane proteins. Nature 426:862–866

    Article  CAS  PubMed  Google Scholar 

  20. Wiedemann N, Kozjak V, Chacinska A et al (2003) Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424:565–571

    Article  CAS  PubMed  Google Scholar 

  21. Gentle I, Gabriel K, Beech P et al (2004) The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J Cell Biol 164:19–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ishikawa D, Yamamoto H, Tamura Y et al (2004) Two novel proteins in the mitochondrial outer membrane mediate β-barrel protein assembly. J Cell Biol 166:621–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Milenkovic D, Kozjak V, Wiedemann N et al (2004) Sam35 of the mitochondrial protein sorting and assembly machinery is a peripheral outer membrane protein essential for cell viability. J Biol Chem 279:22781–22785

    Article  CAS  PubMed  Google Scholar 

  24. Waizenegger T, Habib SJ, Lech M et al (2004) Tob38, a novel essential component in the biogenesis of β-barrel proteins of mitochondria. EMBO Rep 5:704–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chan NC, Lithgow T (2008) The peripheral membrane subunits of the SAM complex function codependently in mitochondrial outer membrane biogenesis. Mol Biol Cell 19:126–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kutik S, Stojanovski D, Becker L et al (2008) Dissecting membrane insertion of mitochondrial beta-barrel proteins. Cell 132:1011–1024

    Article  CAS  PubMed  Google Scholar 

  27. Dukanovic J, Dimmer KS, Bonnefoy N et al (2009) Genetic and functional interactions between the mitochondrial outer membrane proteins Tom6 and Sam37. Mol Cell Biol 29:5975–5988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gray MW (2011) The incredible shrinking organelle. EMBO Rep 12:873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Walther DM, Papic D, Bos MP et al (2009) Signals in bacterial β-barrel proteins are functional in eukaryotic cells for targeting to and assembly in mitochondria. Proc Natl Acad Sci U S A 106:2531–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kozjak-Pavlovic V, Ott C, Gotz M et al (2011) Neisserial Omp85 protein is selectively recognized and assembled into functional complexes in the outer membrane of human mitochondria. J Biol Chem 286:27019–27026

    Google Scholar 

  31. Müller JE, Papic D, Ulrich T et al (2011) Mitochondria can recognize and assemble fragments of a beta-barrel structure. Mol Biol Cell 22:1638–1647

    Article  PubMed  PubMed Central  Google Scholar 

  32. Walther DM, Bos MP, Rapaport D et al (2010) The mitochondrial porin, VDAC, has retained the ability to be assembled in the bacterial outer membrane. Mol Biol Evol 27:887–895

    Article  CAS  PubMed  Google Scholar 

  33. Reumann S, Davila-Aponte J, Keegstra K (1999) The evolutionary origin of the protein-translocating channel of chloroplastic envelope membranes: identification of a cyanobacterial homolog. Proc Natl Acad Sci U S A 96:784–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gentle IE, Burri L, Lithgow T (2005) Molecular architecture and function of the Omp85 family of proteins. Mol Microbiol 58:1216–1225

    Article  CAS  PubMed  Google Scholar 

  35. Moslavac S, Mirus O, Bredemeier R et al (2005) Conserved pore-forming regions in polypeptide-transporting proteins. FEBS J 272:1367–1378

    Article  CAS  PubMed  Google Scholar 

  36. Sanchez-Pulido L, Devos D, Genevrois S et al (2003) POTRA: a conserved domain in the FtsQ family and a class of beta-barrel outer membrane proteins. Trends Biochem Sci 28:523–526

    Article  CAS  PubMed  Google Scholar 

  37. Arnold T, Zeth K, Linke D (2010) Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition. J Biol Chem 285:18003–18015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Habib SJ, Waizenegger T, Niewienda A et al (2007) The N-terminal domain of Tob55 has a receptor-like function in the biogenesis of mitochondrial beta-barrel proteins. J Cell Biol 176:77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim S, Malinverni JC, Sliz P et al (2007) Structure and function of an essential component of the outer membrane protein assembly machine. Science 317:961–964

    Article  CAS  PubMed  Google Scholar 

  40. Koenig P, Mirus O, Haarmann R et al (2010) Conserved properties of polypeptide transport-associated (POTRA) domains derived from cyanobacterial Omp85. J Biol Chem 285:18016–18024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stroud DA, Becker T, Qiu J et al (2011) Biogenesis of mitochondrial beta-barrel proteins: the POTRA domain is involved in precursor release from the SAM complex. Mol Biol Cell 22:2823–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmid Y, Grassl GA, Buhler OT et al (2004) Yersinia enterocolitica adhesin A induces production of interleukin-8 in epithelial cells. Infect Immun 72:6780–6789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Herlan M, Bornhovd C, Hell K et al (2004) Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor. J Cell Biol 165:167–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Our work is supported by the Deutsche Forschungsgemeinschaft (SFB766/TP B11 and RA 1028/7-1 to D.R. and SFB766/TP B1 to I.A.) and by the UKT fortüne program (F1433253 to P.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Rapaport .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ulrich, T., Oberhettinger, P., Autenrieth, I.B., Rapaport, D. (2015). Yeast Mitochondria as a Model System to Study the Biogenesis of Bacterial β-Barrel Proteins. In: Buchanan, S., Noinaj, N. (eds) The BAM Complex. Methods in Molecular Biology, vol 1329. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2871-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2871-2_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2870-5

  • Online ISBN: 978-1-4939-2871-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics