Skip to main content

Assessing the Outer Membrane Insertion and Folding of Multimeric Transmembrane β-Barrel Proteins

  • Protocol
The BAM Complex

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1329))

Abstract

In addition to the cytoplasmic membrane, Gram-negative bacteria have a second lipid bilayer, the outer membrane, which is the de facto barrier between the cell and the extracellular milieu. Virtually all integral proteins of the outer membrane form β-barrels, which are inserted into the outer membrane by the BAM complex. Some outer membrane proteins, like the porins and trimeric autotransporter adhesins, are multimeric. In the former case, the porin trimer consists of three individual β-barrels, whereas in the latter, the single autotransporter β-barrel domain is formed by three separate polypeptides. This chapter reviews methods to investigate the folding and membrane insertion of multimeric OMPs and further explains the use of a BamA depletion strain to study the effects of the BAM complex on multimeric OMPs in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414

    Article  PubMed  PubMed Central  Google Scholar 

  2. Remmert M, Biegert A, Linke D et al (2010) Evolution of outer membrane beta-barrels from an ancestral beta beta hairpin. Mol Biol Evol 27:1348–1358

    Article  CAS  PubMed  Google Scholar 

  3. Delcour AH (2002) Structure and function of pore-forming β-barrels from bacteria. J Mol Microbiol Biotechnol 4:1–10

    CAS  PubMed  Google Scholar 

  4. Koronakis V, Eswaran J, Hughes C (2004) Structure and function of TolC: the bacterial exit duct for proteins and drugs. Ann Rev Biochem 73:467–489

    Article  CAS  PubMed  Google Scholar 

  5. Linke D, Riess T, Autenrieth IB et al (2006) Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol 14:264–270

    Article  CAS  PubMed  Google Scholar 

  6. Reid J, Fung H, Gehring K et al (1988) Targeting of porin to the outer membrane of Escherichia coli. Rate of trimer assembly and identification of a dimer intermediate. J Biol Chem 263:7753–7759

    CAS  PubMed  Google Scholar 

  7. Wollmann P, Zeth K, Lupas AN et al (2006) Purification of the YadA membrane anchor for secondary structure analysis and crystallization. Int J Biol Macromol 39:3–9

    Article  CAS  PubMed  Google Scholar 

  8. Knowles T, Scott-Tucker A, Overduin M et al (2009) Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol 7:206–214

    Article  CAS  PubMed  Google Scholar 

  9. Noinaj N, Kuszak AJ, Gumbart JC et al (2013) Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501:385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hagan CL, Silhavy TJ, Kahne D (2011) β-Barrel membrane protein assembly by the Bam complex. Ann Rev Biochem 80:189–210

    Article  CAS  PubMed  Google Scholar 

  11. Lehr U, Schütz M, Oberhettinger P et al (2010) C-terminal amino acid residues of the trimeric autotransporter adhesin YadA of Yersinia enterocolitica are decisive for its recognition and assembly by BamA. Mol Microbiol 78:932–946

    Article  CAS  PubMed  Google Scholar 

  12. Oberhettinger P, Schütz M, Leo JC et al (2012) Intimin and invasin export their C-terminus to the bacterial cell surface using an inverse mechanism compared to classical autotransport. PloS One 7, e47069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    Google Scholar 

  14. Thein M, Sauer G, Paramasivam N et al (2010) Efficient subfractionation of gram-negative bacteria for proteomics studies. J Proteome Res 9:6135–6147

    Article  CAS  PubMed  Google Scholar 

  15. Arnold T, Linke D (2008) The use of detergents to purify membrane proteins. Curr Protoc Protein Sci. Chapter 4, Unit 4.8.1–4.8.30

    Google Scholar 

  16. Molloy MP, Herbert BR, Slade MB et al (2000) Proteomic analysis of the Escherichia coli outer membrane. Eur J Biochem 267:2871–2881

    Article  CAS  PubMed  Google Scholar 

  17. Osborn MJ, Gander JE, Parisi E et al (1972) Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem 247:3962–3972

    CAS  PubMed  Google Scholar 

  18. Carlone GM, Thomas ML, Rumschlag HS et al (1986) Rapid microprocedure for isolating detergent-insoluble outer membrane proteins from Haemophilus species. J Clin Microbiol 24:330–332

    Google Scholar 

  19. Rosenbusch JP (1974) Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding. J Biol Chem 249:8019–8029

    CAS  PubMed  Google Scholar 

  20. Arnold T, Poynor M, Nussberger S et al (2007) Gene duplication of the eight-stranded beta-barrel OmpX produces a functional pore: a scenario for the evolution of transmembrane beta-barrels. J Mol Biol 366:1174–1184

    Article  CAS  PubMed  Google Scholar 

  21. Rutten L, Geurtsen J, Lambert W et al (2006) Crystal structure and catalytic mechanism of the LPS 3-O-deacylase PagL from Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 103:7071–7076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Watanabe Y (2002) Effect of various mild surfactants on the reassembly of an oligomeric integral membrane protein OmpF porin. J Protein Chem 21:169–175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Tracy Palmer, University of Dundee, for providing us with the BamA depletion strain. For funding, we thank FEMS (an advanced fellowship to J.C.L.), UKT fortüne program (F1433253 to P.O.) and the German Science Foundation (SFB766/B10 to D.L.). We wish to thank Prof. Andrei Lupas (Max Planck Institute for Developmental Biology, Tübingen), and Dr. Monika Schütz and Prof. Ingo B. Autenrieth (University Clinics Tübingen) for continuing support and collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Linke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Leo, J.C., Oberhettinger, P., Linke, D. (2015). Assessing the Outer Membrane Insertion and Folding of Multimeric Transmembrane β-Barrel Proteins. In: Buchanan, S., Noinaj, N. (eds) The BAM Complex. Methods in Molecular Biology, vol 1329. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2871-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2871-2_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2870-5

  • Online ISBN: 978-1-4939-2871-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics