Skip to main content

Autoradiography Assessment of Muscarinic Receptors in the Central Nervous System

  • Protocol

Part of the book series: Neuromethods ((NM,volume 107))

Abstract

The detection of muscarinic receptor binding sites is a crucial step in many experimental conditions. Although in peripheral tissue, the radioligand binding (see appropriate chapter) allows to obtain well-defined receptor characteristic, and also is usable in some central nervous system regions, when trying to determine receptor binding in central nervous system regions with low density or with infinitesimally small receptor changes, the receptor autoradiography is a better method. The development of this method made important progress, and some different modes (phosphor imaging) are used nowadays. Here, we describe muscarinic receptor detection using different radioligands: [3H]-QNB, [3H]-NMS, [3H]-pirenzepine, and [3H]-AFDX-384. Specific attention is paid to the detection of subtypes of muscarinic receptors and the limits of the method are emphasized.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

3H-QNB:

3H-quinuclidinyl benzilate, 3H-1-azabicyclo[2.2.2]oct-3-yl 2-hydroxy-2, 2-diphenylacetate

3H-NMS:

3H-N-methyl-scopolamine, 3H-(1R,2S,4R,5S,7R)-{[(2R)-3-hydroxy-2-phenylpropanoyl]oxy}s[19]-9,9-dimethyl-3-oxa-9-azoniatricyclo [3.3.1.02,4]nonane

3H-pirenzepine:

3H-11-[(4-methylpiperazin-1-yl)acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one

3H-AFDX-384:

3H-N-(2-[(2R)-2-[(dipropylamino)methyl]piperidin-1-yl]ethyl)-6-oxo-5H-pyrido[2,3-b][1,4]benzodiazepine-11-carboxamide

RT:

Room temperature

MRs:

Muscarinic receptors

GPCRs:

G protein-coupled receptors

References

  1. Voytas D, Ke N (2001) Detection and quantitation of radiolabeled proteins and DNA in gels and blots. In: Frederick M Ausubel et al (eds.) Current protocols in molecular biology. Appendix 3: appendix 3A. doi:10.1002/0471142727.mba03as48

  2. Laskey RA (1993) Efficient detection of biomolecules by autoradiography, fluorography or chemiluminescence. Principles of detection using radiographic film. Amersham Life Sci. Review 23:Part I

    Google Scholar 

  3. Chabot JG, Kar S, Quirion R (1996) Autoradiographical and immunohistochemical analysis of receptor localization in the central nervous system. Histochem J 28:729–745

    Article  CAS  PubMed  Google Scholar 

  4. de St Victor N (1867) Sur une noublle action de la lumière Sixième Mémoire. Hebdomadaire des Séances de l’Academie des Sciences 65:505–507

    Google Scholar 

  5. Ross R (1966) Electron microscope autoradiography. Adv Tracer Methodol 3:131–137

    Article  CAS  PubMed  Google Scholar 

  6. Harvey B (2008) Autoradiography and fluorography. In: Rapley R, Walker J (eds) Molecular biomethods handbook. Humana, Totowa, pp 396–410. doi:10.1007/978-1-60327-375-6_26

    Chapter  Google Scholar 

  7. Stumpf WE (2013) Whole-body and microscopic autoradiography to determine tissue distribution of biopharmaceuticals—target discoveries with receptor micro-autoradiography engendered new concepts and therapies for vitamin D. Adv Drug Deliv Rev 65:1086–1097. doi:10.1016/j.addr.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  8. Porter CW, Barnard EA (1976) Ultrastructural studies on the acetylcholine receptor at motor end plates of normal and pathologic muscles. Ann N Y Acad Sci 274(1):85–107. doi:10.1111/j.1749-6632.1976.tb47678.x

    Article  CAS  PubMed  Google Scholar 

  9. Kuhar MJ, Yamamura HI (1975) Light autoradiographic localisation of cholinergic muscarinic receptors in rat brain by specific binding of a potent antagonist. Nature 253(5492):560–561

    Article  CAS  PubMed  Google Scholar 

  10. Lane M-A, Sastre A, Law M, Salpeter MM (1977) Cholinergic and adrenergic receptors on mouse cardiocytes in vitro. Dev Biol 57(2):254–269, doi:http://dx.doi.org/10.1016/0012-1606(77)90213-5

    Article  CAS  PubMed  Google Scholar 

  11. Sugiyama H, Daniels MP, Nirenberg M (1977) Muscarinic acetylcholine receptors of the developing retina. Proc Natl Acad Sci U S A 74(12):5524–5528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hartzell HC (1980) Distribution of muscarinic acetylcholine receptors and presynaptic nerve terminals in amphibian heart. J Cell Biol 86(1):6–20

    Article  CAS  PubMed  Google Scholar 

  13. Hoss W, Messer W Jr (1986) Multiple muscarinic receptors in the CNS. Significance and prospects for future research. Biochem Pharmacol 35(22):3895–3901

    Article  CAS  PubMed  Google Scholar 

  14. Yoshida A, Fujino T, Maruyama S, Ito Y, Taki Y, Yamada S (2010) The forefront for novel therapeutic agents based on the pathophysiology of lower urinary tract dysfunction: bladder selectivity based on in vivo drug-receptor binding characteristics of antimuscarinic agents for treatment of overactive bladder. J Pharmacol Sci 112(2):142–150. doi:10.1254/jphs.09R14FM

    Article  CAS  PubMed  Google Scholar 

  15. Karlsson E, Jolkkonen M, Mulugeta E, Onali P, Adem A (2000) Snake toxins with high selectivity for subtypes of muscarinic acetylcholine receptors. Biochimie 82(9–10):793–806, doi:http://dx.doi.org/10.1016/S0300-9084(00)01176-7

    Article  CAS  PubMed  Google Scholar 

  16. Olianas MC, Adem A, Karlsson E, Onali P (2004) Action of the muscarinic toxin MT7 on agonist-bound muscarinic M1 receptors. Eur J Pharmacol 487(1-3):65–72

    Article  CAS  PubMed  Google Scholar 

  17. Hazai I, Klebovich I (2003) Thin-layer radiochromatography. In: Sherma J, Fried B (eds) Handbook of thin-layer chromatography. Marcel Dekker, Inc., New York, pp 442–470

    Google Scholar 

  18. Kuhar MJ (2001) In vitro autoradiography. In: Enna SJ (editor-in-Chief) et al (eds.) Current protocols in pharmacology, Chapter 8:Unit 8.1. doi:10.1002/0471141755.ph0801s00

  19. Frey KA, Albin RL (1997) Receptor binding techniques. In: Jacqueline N Crawley et al (eds.) Current protocols in neuroscience, Chapter 1:Unit 1.4. doi:10.1002/0471142301.ns0104s00

    Google Scholar 

  20. Sóvágó J, Dupuis DS, Gulyás B, Hall H (2001) An overview on functional receptor autoradiography using [35S]GTPgammaS. Brain Res Brain Res Rev 38:149–164

    Article  PubMed  Google Scholar 

  21. Bundy DC (2001) Autoradiography. In: John E Coligan et al (eds.) Current protocols in protein science, Chapter 10:Unit 10.11. doi:10.1002/0471140864.ps1011s10

  22. Kanekal S, Sahai A, Jones RE, Brown D (1995) Storage-phosphor autoradiography: a rapid and highly sensitive method for spatial imaging and quantitation of radioisotopes. J Pharmacol Toxicol Methods 33:171–178

    Article  CAS  PubMed  Google Scholar 

  23. Zavitsanou K, Katsifis A, Mattner F, Huang X-F (2003) Investigation of M1//M4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology 29(3):619–625

    Google Scholar 

  24. Wang Q, Wei X, Gao H, Li J, Liao J, Liu X, Qin B, Yu Y, Deng C, Tang B, Huang XF (2014) Simvastatin reverses the downregulation of M1/4 receptor binding in 6-hydroxydopamine-induced parkinsonian rats: The association with improvements in long-term memory. Neuroscience 267:57–66, doi:http://dx.doi.org/10.1016/j.neuroscience.2014.02.031

    Article  CAS  PubMed  Google Scholar 

  25. Yamamura HI, Wamsley JK, Deshmukh P, Roeske WR (1983) Differential light microscopic autoradiographic localization of muscarinic cholinergic receptors in the brainstem and spinal cord of the rat using [3H]pirenzepine. Eur J Pharmacol 91(1):147–149, doi:http://dx.doi.org/10.1016/0014-2999(83)90379-5

    Article  CAS  PubMed  Google Scholar 

  26. Wamsley JK, Gehlert DR, Roeske WR, Yamamura HI (1984) Muscarinic antagonist binding site heterogeneity as evidenced by autoradiography after direct labeling with [3H]-QNB and [3H]-pirenzepine. Life Sci 34(14):1395–1402

    Article  CAS  PubMed  Google Scholar 

  27. Villiger JW, Faull RLM (1985) Muscarinic cholinergic receptors in the human spinal cord: differential localization of [3H]pirenzepine and [3H]quinuclidinylbenzilate binding sites. Brain Res 345(1):196–199, doi:http://dx.doi.org/10.1016/0006-8993(85)90854-6

    Article  CAS  PubMed  Google Scholar 

  28. Cortes R, Palacios JM (1986) Muscarinic cholinergic receptor subtypes in the rat brain. I Quantitative autoradiographic studies. Brain Res 362(2):227–238

    Article  CAS  PubMed  Google Scholar 

  29. Buckley NJ, Burnstock G (1986) Autoradiographic localization of peripheral M1 muscarinic receptors using [3H]pirenzepine. Brain Res 375(1):83–91, doi:http://dx.doi.org/10.1016/0006-8993(86)90961-3

    Article  CAS  PubMed  Google Scholar 

  30. Aubert I, Cecyre D, Gauthier S, Quirion R (1992) Characterization and autoradiographic distribution of [3H]AF-DX 384 binding to putative muscarinic M2 receptors in the rat brain. Eur J Pharmacol 217(2–3):173–184

    Article  CAS  PubMed  Google Scholar 

  31. Mulugeta E, Karlsson E, Islam A, Kalaria R, Mangat H, Winblad B, Adem A (2003) Loss of muscarinic M4 receptors in hippocampus of Alzheimer patients. Brain Res 960(1–2):259–262, doi:http://dx.doi.org/10.1016/S0006-8993(02)03542-4

    Article  CAS  PubMed  Google Scholar 

  32. Tien L-T, Fan L-W, Sogawa C, Ma T, Loh HH, Ho I-K (2004) Changes in acetylcholinesterase activity and muscarinic receptor bindings in μ-opioid receptor knockout mice. Molecular Brain Research 126(1):38–44, doi:http://dx.doi.org/10.1016/j.molbrainres.2004.03.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wolff SC, Hruska Z, Nguyen L, Dohanich GP (2008) Asymmetrical distributions of muscarinic receptor binding in the hippocampus of female rats. Eur J Pharmacol 588(2–3):248–250, doi:http://dx.doi.org/10.1016/j.ejphar.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  34. Paxinos G, Franklin KBJ (2008) The mouse brain in stereotaxic coordinates. The coronal plates and diagrams, Compact edn, 3rd edn. Academic, London

    Google Scholar 

  35. Caulfield MP, Birdsall NJ (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50(2):279–290

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research on this topic was supported by grant GAUK 328314 from Grant Agency of Charles University and by projects PRVOUK P25/1LF and PRVOUK P35/1LF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaromir Myslivecek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Farar, V., Myslivecek, J. (2016). Autoradiography Assessment of Muscarinic Receptors in the Central Nervous System. In: Myslivecek, J., Jakubik, J. (eds) Muscarinic Receptor: From Structure to Animal Models. Neuromethods, vol 107. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2858-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2858-3_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2857-6

  • Online ISBN: 978-1-4939-2858-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics