Skip to main content

Allosteric Modulation of Muscarinic Receptors

  • Protocol

Part of the book series: Neuromethods ((NM,volume 107))

Abstract

Allosteric ligands modulate binding and function of muscarinic receptors in a different way than orthosteric ligands. Unlike orthosteric ligands their effects are limited by a cooperativity factor. This imparts them unique properties, including cooperativity-based selectivity, functional selectivity and restoring of physiological-like space and time pattern of signaling under pathological conditions. Therefore, allosteric modulators of muscarinic receptor are intensively studied as possible therapeutics of pathological conditions including Alzheimer’s disease and schizophrenia. Research of allosteric modulation has pioneered the way for a whole class A of G-protein coupled receptors and has had an impact beyond its own field. We review principles of allosteric modulations and their implications for proper design of binding as well as functional experiments and for proper data analysis. We demonstrate immense complexity of allosteric modulation of functional responses. Such complexity is reflected in the inability to determine individual microscopic constants in allosterically modulated systems. Therefore, the effects of a given allosteric modulator can be characterized by only two macroscopic parameters, namely a change in the agonist potency and efficacy. We also discuss distinct properties of allosteric interactions that are specific to muscarinic receptors.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Monod J, Changeux JP, Jacob F (1963) Allosteric proteins and cellular control systems. J Mol Biol 6:306–329

    Article  CAS  PubMed  Google Scholar 

  2. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  3. Clark AL, Mitchelson F (1976) The inhibitory effect of gallamine on muscarinic receptors. Br J Pharmacol 58:323–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Stockton JM, Birdsall NJ, Burgen AS, Hulme EC (1983) Modification of the binding properties of muscarinic receptors by gallamine. Mol Pharmacol 23:551–557

    CAS  PubMed  Google Scholar 

  5. Dalton DW, Tyers MB (1982) A comparison of the muscarinic antagonist actions of pancuronium and alcuronium. J Auton Pharmacol 2:261–266

    Article  CAS  PubMed  Google Scholar 

  6. Waelbroeck M, Robberecht P, De Neef P, Christophe J (1984) Effects of verapamil on the binding properties of rat heart muscarinic receptors: evidence for an allosteric site. Biochem Biophys Res Commun 121:340–345

    Article  CAS  PubMed  Google Scholar 

  7. Lai WS, Ramkumar V, El-Fakahany EE (1985) Possible allosteric interaction of 4-aminopyridine with rat brain muscarinic acetylcholine receptors. J Neurochem 44:1936–1942

    Article  CAS  PubMed  Google Scholar 

  8. Kloog Y, Sokolovsky M (1985) Allosteric interactions between muscarinic agonist binding sites and effector sites demonstrated by the use of bisquaternary pyridinium oximes. Life Sci 36:2127–2136

    Article  CAS  PubMed  Google Scholar 

  9. Nedoma J, Tucek S, Danilov AF, Shelkovnikov SA (1986) Stabilization of antagonist binding to cardiac muscarinic acetylcholine receptors by gallamine and other neuromuscular blocking drugs. J Pharmacol Exp Ther 236:219–223

    CAS  PubMed  Google Scholar 

  10. Flynn DD, Mash DC (1989) Multiple in vitro interactions with and differential in vivo regulation of muscarinic receptor subtypes by tetrahydroaminoacridine. J Pharmacol Exp Ther 250:573–581

    CAS  PubMed  Google Scholar 

  11. Jakubík J, Bačáková L, El-Fakahany EE, Tuček S (1997) Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol 52:172–179

    PubMed  Google Scholar 

  12. Lazareno S, Popham A, Birdsall NJ (2000) Allosteric interactions of staurosporine and other indolocarbazoles with N-[methyl-(3)H]scopolamine and acetylcholine at muscarinic receptor subtypes: identification of a second allosteric site. Mol Pharmacol 58:194–207

    CAS  PubMed  Google Scholar 

  13. Leppik RA, Miller RC, Eck M, Paquet JL (1994) Role of acidic amino acids in the allosteric modulation by gallamine of antagonist binding at the m2 muscarinic acetylcholine receptor. Mol Pharmacol 45:983–990

    CAS  PubMed  Google Scholar 

  14. Matsui H, Lazareno S, Birdsall NJ (1995) Probing of the location of the allosteric site on m1 muscarinic receptors by site-directed mutagenesis. Mol Pharmacol 47:88–98

    CAS  PubMed  Google Scholar 

  15. Krejčí A, Tuček S (2001) Changes of cooperativity between N-methylscopolamine and allosteric modulators alcuronium and gallamine induced by mutations of external loops of muscarinic M3 receptors. Mol Pharmacol 60:761–767

    PubMed  Google Scholar 

  16. Voigtländer U, Jöhren K, Mohr M, Raasch A, Tränkle C, Buller S, Ellis J, Höltje H, Mohr K (2003) Allosteric site on muscarinic acetylcholine receptors: identification of two amino acids in the muscarinic M2 receptor that account entirely for the M2/M5 subtype selectivities of some structurally diverse allosteric ligands in N-methylscopolamine-occupied receptors. Mol Pharmacol 64:21–31

    Article  PubMed  Google Scholar 

  17. Jakubík J, Krejčí A, Doležal V (2005) Asparagine, valine, and threonine in the third extracellular loop of muscarinic receptor have essential roles in the positive cooperativity of strychnine-like allosteric modulators. J Pharmacol Exp Ther 313:688–696

    Article  PubMed  Google Scholar 

  18. Huang X, Prilla S, Mohr K, Ellis J (2005) Critical amino acid residues of the common allosteric site on the M2 muscarinic acetylcholine receptor: more similarities than differences between the structurally divergent agents gallamine and bis(ammonio)alkane-type hexamethylene-bis-[dimethyl-(3-phthalimidopropyl)ammonium]dibromide. Mol Pharmacol 68:769–778

    CAS  PubMed  Google Scholar 

  19. Tränkle C, Dittmann A, Schulz U, Weyand O, Buller S, Jöhren K, Heller E, Birdsall NJM, Holzgrabe U, Ellis J, Höltje HD, Mohr K (2005) Atypical muscarinic allosteric modulation: cooperativity between modulators and their atypical binding topology in muscarinic M2 and M2/M5 chimeric receptors. Mol Pharmacol 68:1597–1610

    PubMed  Google Scholar 

  20. Prilla S, Schrobang J, Ellis J, Höltje H, Mohr K (2006) Allosteric interactions with muscarinic acetylcholine receptors: complex role of the conserved tryptophan M2 422Trp in a critical cluster of amino acids for baseline affinity, subtype selectivity, and cooperativity. Mol Pharmacol 70:181–193

    CAS  PubMed  Google Scholar 

  21. Jakubík J, El-Fakahany EE (2010) Allosteric modulation of muscarinic acetylcholine receptors. Pharmaceuticals 9:2838–2860

    Article  Google Scholar 

  22. Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hübner H, Pardon E, Valant C, Sexton PM, Christopoulos A, Felder CC, Gmeiner P, Steyaert J, Weis WI, Garcia KC, Wess J, Kobilka BK (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504:101–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Fisher A (2012) Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer’s disease. J Neurochem 120(Suppl 1):22–33

    Article  CAS  PubMed  Google Scholar 

  24. Jones CK, Byun N, Bubser M (2012) Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology 37:16–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zahn K, Eckstein N, Tränkle C, Sadée W, Mohr K (2002) Allosteric modulation of muscarinic receptor signaling: alcuronium-induced conversion of pilocarpine from an agonist into an antagonist. J Pharmacol Exp Ther 301:720–728

    Article  CAS  PubMed  Google Scholar 

  26. Jäger D, Schmalenbach C, Prilla S, Schrobang J, Kebig A, Sennwitz M, Heller E, Tränkle C, Holzgrabe U, Höltje H, Mohr K (2007) Allosteric small molecules unveil a role of an extracellular E2/transmembrane helix 7 junction for G protein-coupled receptor activation. J Biol Chem 282:34968–34976

    Article  PubMed  Google Scholar 

  27. Jakubík J, Randaková A, El-Fakahany EE, Doležal V (2009) Divergence of allosteric effects of rapacuronium on binding and function of muscarinic receptors. BMC Pharmacol 9:15

    Article  PubMed Central  PubMed  Google Scholar 

  28. Jakubík J, Bačáková L, Lisá V, El-Fakahany EE, Tuček S (1996) Activation of muscarinic acetylcholine receptors via their allosteric binding sites. Proc Natl Acad Sci U S A 93:8705–8709

    Article  PubMed Central  PubMed  Google Scholar 

  29. Lebois EP, Bridges TM, Lewis LM, Dawson ES, Kane AS, Xiang Z, Jadhav SB, Yin H, Kennedy JP, Meiler J, Niswender CM, Jones CK, Conn PJ, Weaver CD, Lindsley CW (2010) Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M1 receptor function in the central nervous system. ACS Chem Neurosci 1:104–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lebois EP, Digby GJ, Sheffler DJ, Melancon BJ, Tarr JC, Cho HP, Miller NR, Morrison R, Bridges TM, Xiang Z, Daniels JS, Wood MR, Conn PJ, Lindsley CW (2011) Development of a highly selective, orally bioavailable and CNS penetrant M1 agonist derived from the MLPCN probe ML071. Bioorg Med Chem Lett 21:6451–6455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Digby GJ, Noetzel MJ, Bubser M, Utley TJ, Walker AG, Byun NE, Lebois EP, Xiang Z, Sheffler DJ, Cho HP, Davis AA, Nemirovsky NE, Mennenga SE, Camp BW, Bimonte-Nelson HA, Bode J, Italiano K, Morrison R, Daniels JS, Niswender CM, Olive MF, Lindsley CW, Jones CK, Conn PJ (2012) Novel allosteric agonists of M1 muscarinic acetylcholine receptors induce brain region-specific responses that correspond with behavioral effects in animal models. J Neurosci 32:8532–8544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Jakubík J, Bačáková L, El-Fakahany EE, Tuček S (1995) Subtype selectivity of the positive allosteric action of alcuronium at cloned M1-M5 muscarinic acetylcholine receptors. J Pharmacol Exp Ther 274:1077–1083

    PubMed  Google Scholar 

  33. Lazareno S, Popham A, Birdsall NJM (2002) Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol Pharmacol 62:1492–1505

    Article  CAS  PubMed  Google Scholar 

  34. Lazareno S, Doležal V, Popham A, Birdsall NJM (2004) Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol Pharmacol 65:257–266

    Article  CAS  PubMed  Google Scholar 

  35. Tränkle C, Mies-Klomfass E, Cid MH, Holzgrabe U, Mohr K (1998) Identification of a [3H]Ligand for the common allosteric site of muscarinic acetylcholine M2 receptors. Mol Pharmacol 54:139–145

    PubMed  Google Scholar 

  36. Lysíková M, Fuksová K, Elbert T, Jakubík J, Tuček S (1999) Subtype-selective inhibition of [methyl-3H]-N-methylscopolamine binding to muscarinic receptors by alpha-truxillic acid esters. Br J Pharmacol 127:1240–1246

    Article  PubMed Central  PubMed  Google Scholar 

  37. Jerusalinsky D, Cerveñasky C, Peña C, Raskovsky S, Dajas F (1992) Two polypeptides from Dendroaspis angusticeps venom selectively inhibit the binding of central muscarinic cholinergic receptor ligands. Neurochem Int 20:237–246

    Article  CAS  PubMed  Google Scholar 

  38. Jolkkonen M, Adem A, Hellman U, Wernstedt C, Karlsson E (1995) A snake toxin against muscarinic acetylcholine receptors: amino acid sequence, subtype specificity and effect on guinea-pig ileum. Toxicon 33:399–410

    Article  CAS  PubMed  Google Scholar 

  39. Waelbroeck M, De Neef P, Domenach V, Vandermeers-Piret MC, Vandermeers A (1996) Binding of the labelled muscarinic toxin 125I-MT1 to rat brain muscarinic M1 receptors. Eur J Pharmacol 305:187–192

    Article  CAS  PubMed  Google Scholar 

  40. Fruchart-Gaillard C, Mourier G, Marquer C, Ménez A, Servent D (2006) Identification of various allosteric interaction sites on M1 muscarinic receptor using 125I-Met35-oxidized muscarinic toxin 7. Mol Pharmacol 69:1641–1651

    Article  CAS  PubMed  Google Scholar 

  41. Ilien B, Franchet C, Bernard P, Morisset S, Weill CO, Bourguignon J, Hibert M, Galzi J (2003) Fluorescence resonance energy transfer to probe human M1 muscarinic receptor structure and drug binding properties. J Neurochem 85:768–778

    Article  CAS  PubMed  Google Scholar 

  42. Jakubík J, Zimčík P, Randáková A, Fuksová K, El-Fakahany EE, Doležal V (2014) Molecular mechanisms of methoctramine binding and selectivity at muscarinic acetylcholine receptors. Mol Pharmacol 86:180–192

    Article  PubMed  Google Scholar 

  43. Proška J, Tuček S (1994) Mechanisms of steric and cooperative actions of alcuronium on cardiac muscarinic acetylcholine receptors. Mol Pharmacol 45:709–717

    PubMed  Google Scholar 

  44. Melchiorre C, Minarini A, Angeli P, Giardinà D, Gulini U, Quaglia W (1989) Polymethylene tetraamines as muscarinic receptor probes. Trends Pharmacol Sci. Suppl: 55–59

    Google Scholar 

  45. Tahtaoui C, Parrot I, Klotz P, Guillier F, Galzi J, Hibert M, Ilien B (2004) Fluorescent pirenzepine derivatives as potential bitopic ligands of the human M1 muscarinic receptor. J Med Chem 47:4300–4315

    Article  CAS  PubMed  Google Scholar 

  46. Daval SB, Valant C, Bonnet D, Kellenberger E, Hibert M, Galzi J, Ilien B (2012) Fluorescent derivatives of AC-42 to probe bitopic orthosteric/allosteric binding mechanisms on muscarinic M1 receptors. J Med Chem 55:2125–2143

    Article  CAS  PubMed  Google Scholar 

  47. Burstein ES, Spalding TA, Braüner-Osborne H, Brann MR (1995) Constitutive activation of muscarinic receptors by the G-protein Gq. FEBS Lett 363:261–263

    Article  CAS  PubMed  Google Scholar 

  48. Jakubík J, Bačáková L, El-Fakahany EE, Tuček S (1995) Constitutive activity of the M1-M4 subtypes of muscarinic receptors in transfected CHO cells and of muscarinic receptors in the heart cells revealed by negative antagonists. FEBS Lett 377:275–279

    Article  PubMed  Google Scholar 

  49. Burstein ES, Spalding TA, Brann MR (1997) Pharmacology of muscarinic receptor subtypes constitutively activated by G proteins. Mol Pharmacol 51:312–319

    CAS  PubMed  Google Scholar 

  50. Jakubík J, Janíčková H, El-Fakahany EE, Doležal V (2011) Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy. Br J Pharmacol 162:1029–1044

    Article  PubMed Central  PubMed  Google Scholar 

  51. Jakubík J, Haga T, Tuček S (1998) Effects of an agonist, allosteric modulator, and antagonist on guanosine-gamma-[35S]thiotriphosphate binding to liposomes with varying muscarinic receptor/Go protein stoichiometry. Mol Pharmacol 54:899–906

    PubMed  Google Scholar 

  52. Birdsall NJ, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M (1999) Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: functional studies. Mol Pharmacol 55:778–786

    CAS  PubMed  Google Scholar 

  53. Lazareno S, Birdsall B, Fukazawa T, Gharagozloo P, Hashimoto T, Kuwano H, Popham A, Sugimoto M, Birdsall NJ (1999) Allosteric effects of four stereoisomers of a fused indole ring system with 3H-N-methylscopolamine and acetylcholine at M1-M4 muscarinic receptors. Life Sci 64:519–526

    Article  CAS  PubMed  Google Scholar 

  54. Santrůčková E, Doležal V, El-Fakahany EE, Jakubík J (2014) Long-term activation upon brief exposure to xanomeline is unique to M1 and M4 subtypes of muscarinic acetylcholine receptors. PLoS One 9, e88910

    Article  PubMed Central  PubMed  Google Scholar 

  55. Milligan G, Marshall F, Rees S (1996) G16 as a universal G protein adapter: implications for agonist screening strategies. Trends Pharmacol Sci 17:235–237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Academy of Sciences of the Czech Republic support RVO: 67985823 and Grant Agency of the Czech Republic grant P304/12/G069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Jakubik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jakubik, J., El-Fakahany, E.E. (2016). Allosteric Modulation of Muscarinic Receptors. In: Myslivecek, J., Jakubik, J. (eds) Muscarinic Receptor: From Structure to Animal Models. Neuromethods, vol 107. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2858-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2858-3_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2857-6

  • Online ISBN: 978-1-4939-2858-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics