Skip to main content

Drosophila melanogaster Oogenesis: An Overview

  • Protocol
Drosophila Oogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1328))

Abstract

The Drosophila melanogaster ovary has served as a popular and successful model for understanding a wide range of biological processes: stem cell function, germ cell development, meiosis, cell migration, morphogenesis, cell death, intercellular signaling, mRNA localization, and translational control. This review provides a brief introduction to Drosophila oogenesis, along with a survey of its diverse biological topics and the advanced genetic tools that continue to make this a popular developmental model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roote J, Prokop A (2013) How to design a genetic mating scheme: a basic training package for Drosophila genetics. G3 (Bethesda) 3:353–358

    Article  Google Scholar 

  2. Telfer WH (1975) Development and physiology of the oocyte-nurse cell syncytium. Adv Insect Physiol 11:223–319

    Article  Google Scholar 

  3. Tworzydlo W, Bilinski SM, Kocarek P et al (2010) Ovaries and germline cysts and their evolution in Dermaptera (Insecta). Arthropod Struct Dev 39:360–368

    Article  PubMed  Google Scholar 

  4. Swevers L, Raikhel AS, Sappington TW et al (2005) Vitellogenesis and post-vitellogenic maturation of the insect ovarian follicle. In: Gilbert L (ed) Comprehensive molecular insect science, vol 1. Elsevier BV, Oxford, pp 87–155

    Chapter  Google Scholar 

  5. Godt D, Laski FA (1995) Mechanisms of cell rearrangement and cell recruitment in Drosophila ovary morphogenesis and the requirement of bric à brac. Development 121:173–187

    CAS  PubMed  Google Scholar 

  6. Voog J, Jones DL (2010) Stem cells and the niche: a dynamic duo. Cell Stem Cell 6:103–115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lopez-Onieva L, Fernandez-Minan A, Gonzalez-Reyes A (2008) Jak/Stat signalling in niche support cells regulates dpp transcription to control germline stem cell maintenance in the Drosophila ovary. Development 135:533–540

    Article  CAS  PubMed  Google Scholar 

  8. Forbes AJ, Lin H, Ingham PW et al (1996) hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development 122:1125–1135

    CAS  PubMed  Google Scholar 

  9. Spradling A, Fuller MT, Braun RE et al (2011) Germline stem cells. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a002642

    PubMed Central  PubMed  Google Scholar 

  10. Losick VP, Morris LX, Fox DT et al (2011) Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell 21:159–171

    Article  CAS  PubMed  Google Scholar 

  11. King RC (1970) Ovarian development in Drosophila melanogaster. Academic, New York

    Google Scholar 

  12. Kirilly D, Wang S, Xie T (2011) Self-maintained escort cells form a germline stem cell differentiation niche. Development 138:5087–5097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Decotto E, Spradling AC (2005) The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals. Dev Cell 9:501–510

    Article  CAS  PubMed  Google Scholar 

  14. Xie T (2012) Control of germline stem cell self-renewal and differentiation in the Drosophila ovary: concerted actions of niche signals and intrinsic factors. Wiley Interdiscip Rev Dev Biol 2:261–273

    PubMed  Google Scholar 

  15. Morris LX, Spradling AC (2011) Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary. Development 138:2207–2215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. King RC, Aggarwal SK, Aggarwal U (1968) The development of the Drosophila female reproductive system. J Morphol 124:142–166

    Article  Google Scholar 

  17. Roth S, Lynch JA (2009) Symmetry breaking during Drosophila oogenesis. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a001891

    PubMed Central  PubMed  Google Scholar 

  18. Huynh JR (2005) Fusome as a cell-cell communication channel of Drosophila ovarian cyst. In: Baluska F, Volkmann D, Barlow PW (eds) Cell-cell channels. Eurekah Bioscience, Georgetown, TX, pp 1–19

    Google Scholar 

  19. Warn RM, Gutzeit HO, Smith L et al (1985) F-actin rings are associated with the ring canals of the Drosophila egg chamber. Exp Cell Res 157:355–363

    Article  CAS  PubMed  Google Scholar 

  20. Field CM, Alberts BM (1995) Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J Cell Biol 131:165–178

    Article  CAS  PubMed  Google Scholar 

  21. Robinson DN, Cant K, Cooley L (1994) Morphogenesis of Drosophila ovarian ring canals. Development 120:2015–2025

    CAS  PubMed  Google Scholar 

  22. Huynh JR, St Johnston D (2004) The origin of asymmetry: early polarisation of the Drosophila germline cyst and oocyte. Curr Biol 14:R438–R449

    Article  CAS  PubMed  Google Scholar 

  23. Keyes LN, Spradling AC (1997) The Drosophila gene fs(2)cup interacts with otu to define a cytoplasmic pathway required for the structure and function of germ-line chromosomes. Development 124:1419–1431

    CAS  PubMed  Google Scholar 

  24. Lantz V, Chang JS, Horabin JI et al (1994) The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity. Genes Dev 8:598–613

    Article  CAS  PubMed  Google Scholar 

  25. Suter B, Romberg LM, Steward R (1989) Bicaudal-D, a Drosophila gene involved in developmental asymmetry: localized transcript accumulation in ovaries and sequence similarity to myosin heavy chain tail domains. Genes Dev 3:1957–1968

    Article  CAS  PubMed  Google Scholar 

  26. de Cuevas M, Spradling AC (1998) Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development 125:2781–2789

    CAS  PubMed  Google Scholar 

  27. Riechmann V, Ephrussi A (2001) Axis formation during Drosophila oogenesis. Curr Opin Genet Dev 11:374–383

    Article  CAS  PubMed  Google Scholar 

  28. Nystul T, Spradling A (2007) An epithelial niche in the Drosophila ovary undergoes long-range stem cell replacement. Cell Stem Cell 1:277–285

    Article  CAS  PubMed  Google Scholar 

  29. Sahai-Hernandez P, Nystul TG (2013) A dynamic population of stromal cells contributes to the follicle stem cell niche in the Drosophila ovary. Development 140:4490–4498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Song X, Xie T (2003) wingless signaling regulates the maintenance of ovarian somatic stem cells in Drosophila. Development 130:3259–3268

    Article  CAS  PubMed  Google Scholar 

  31. Kirilly D, Spana EP, Perrimon N et al (2005) BMP signaling is required for controlling somatic stem cell self-renewal in the Drosophila ovary. Dev Cell 9:651–662

    Article  CAS  PubMed  Google Scholar 

  32. Bolivar J, Pearson J, Lopez-Onieva L et al (2006) Genetic dissection of a stem cell niche: the case of the Drosophila ovary. Dev Dyn 235:2969–2979

    Article  CAS  PubMed  Google Scholar 

  33. Wu X, Tanwar PS, Raftery LA (2008) Drosophila follicle cells: morphogenesis in an eggshell. Semin Cell Dev Biol 19:271–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Tworoger M, Larkin MK, Bryant Z et al (1999) Mosaic analysis in the Drosophila ovary reveals a common hedgehog-inducible precursor stage for stalk and polar cells. Genetics 151:739–748

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Roth S, Neuman-Silberberg FS, Barcelo G et al (1995) cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell 81:967–978

    Article  CAS  PubMed  Google Scholar 

  36. Bai J, Montell D (2002) Eyes absent, a key repressor of polar cell fate during Drosophila oogenesis. Development 129:5377–5388

    Article  CAS  PubMed  Google Scholar 

  37. St Johnston D, Gonzalez-Reyes A (1998) Patterning of the follicle cell epithelium along the anterior-posterior axis during Drosophila oogenesis. Development 125:2837–2846

    PubMed  Google Scholar 

  38. Deng WM, Althauser C, Ruohola-Baker H (2001) Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells. Development 128:4737–4746

    CAS  PubMed  Google Scholar 

  39. Yoon WH, Meinhardt H, Montell DJ (2011) miRNA-mediated feedback inhibition of JAK/STAT morphogen signalling establishes a cell fate threshold. Nat Cell Biol 13:1062–1069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. He L, Wang X, Montell DJ (2011) Shining light on Drosophila oogenesis: live imaging of egg development. Curr Opin Genet Dev 21:612–619

    Article  CAS  PubMed  Google Scholar 

  41. Prasad M, Wang X, He L et al (2011) Border cell migration: a model system for live imaging and genetic analysis of collective cell movement. Methods Mol Biol 769:277–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Dobens L, Raftery LA (2008) Integration of epithelial patterning and morphogenesis in Drosophila ovarian follicle cells. Dev Dyn 218:80–93

    Article  Google Scholar 

  43. Grammont M (2007) Adherens junction remodeling by the Notch pathway in Drosophila melanogaster oogenesis. J Cell Biol 177:139–150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Haigo SL, Bilder D (2011) Global tissue revolutions in a morphogenetic movement controlling elongation. Science 331:1071–1074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Bilder D, Haigo SL (2012) Expanding the morphogenetic repertoire: perspectives from the Drosophila egg. Dev Cell 22:12–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Gates J (2012) Drosophila egg chamber elongation: insights into how tissues and organs are shaped. Fly 6:213–227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Claycomb JM, Orr-Weaver TL (2005) Developmental gene amplification: insights into DNA replication and gene expression. Trends Genet 21:149–162

    Article  CAS  PubMed  Google Scholar 

  48. Royzman I, Orr-Weaver TL (1998) S phase and differential DNA replication during Drosophila oogenesis. Genes Cells 3:767–776

    Article  CAS  PubMed  Google Scholar 

  49. Dej KJ, Spradling AC (1999) The endocycle controls nurse cell polytene chromosome structure during Drosophila oogenesis. Development 126:293–303

    CAS  PubMed  Google Scholar 

  50. Nordman J, Orr-Weaver TL (2012) Regulation of DNA replication during development. Development 139:455–464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Klusza S, Deng WM (2011) At the crossroads of differentiation and proliferation: precise control of cell-cycle changes by multiple signaling pathways in Drosophila follicle cells. Bioessays 33:124–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Kronja I, Orr-Weaver TL (2011) Translational regulation of the cell cycle: when, where, how and why? Philos Trans R Soc Lond B Biol Sci 366:3638–3652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Von Stetina JR, Orr-Weaver TL (2011) Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a005553

    Google Scholar 

  54. Bosco G, Orr-Weaver TL (2002) The cell cycle during oogenesis and early embryogenesis in Drosophila. Adv Dev Biol Biochem. doi:10.1016/S1569-1799(02)12026-0

    Google Scholar 

  55. Smith PA, King RC (1968) Genetic control of synaptonemal complexes in Drosophila melanogaster. Genetics 60:335–351

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Mahowald AP, Goralski TJ, Caulton JH (1983) In vitro activation of Drosophila eggs. Dev Biol 98:437–445

    Article  CAS  PubMed  Google Scholar 

  57. Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  CAS  PubMed  Google Scholar 

  58. Ephrussi A, Dickinson LK, Lehmann R (1991) oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66:37–50

    Article  CAS  PubMed  Google Scholar 

  59. Kim-Ha J, Smith JL, Macdonald PM (1991) oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66:23–35

    Article  CAS  PubMed  Google Scholar 

  60. St Johnston D, Beuchle D, Nusslein-Volhard C (1991) staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66:51–63

    Article  CAS  PubMed  Google Scholar 

  61. Kugler JM, Lasko P (2009) Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly 3:15–28

    Article  CAS  PubMed  Google Scholar 

  62. Lasko P (2011) Posttranscriptional regulation in Drosophila oocytes and early embryos. Wiley Interdiscip Rev RNA 2:408–416

    Article  CAS  PubMed  Google Scholar 

  63. Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136:719–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Cooperstock RL, Lipshitz HD (2001) RNA localization and translational regulation during axis specification in the Drosophila oocyte. Int Rev Cytol 203:541–566

    Article  CAS  PubMed  Google Scholar 

  65. Becalska AN, Gavis ER (2009) Lighting up mRNA localization in Drosophila oogenesis. Development 136:2493–2503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Chekulaeva M, Hentze MW, Ephrussi A (2006) Bruno acts as a dual repressor of oskar translation, promoting mRNA oligomerization and formation of silencing particles. Cell 124:521–533

    Article  CAS  PubMed  Google Scholar 

  67. Vardy L, Orr-Weaver TL (2007) Regulating translation of maternal messages: multiple repression mechanisms. Trends Cell Biol 17:547–554

    Article  CAS  PubMed  Google Scholar 

  68. Bratu DP, Cha BJ, Mhlanga MM et al (2003) Visualizing the distribution and transport of mRNAs in living cells. Proc Natl Acad Sci U S A 100:13308–13313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Mhlanga MM, Bratu DP, Genovesio A et al (2009) In vivo colocalisation of oskar mRNA and trans-acting proteins revealed by quantitative imaging of the Drosophila oocyte. PLoS One. doi:10.1371/journal.pone.0006241

    PubMed Central  PubMed  Google Scholar 

  70. Zimyanin VL, Belaya K, Pecreaux J et al (2008) In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134:843–853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Parton RM, Hamilton RS, Ball G et al (2011) A PAR-1-dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte. J Cell Biol 194:121–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Sinsimer KS, Lee JJ, Thiberge SY et al (2013) Germ plasm anchoring is a dynamic state that requires persistent trafficking. Cell Rep 5:1169–1177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Cha BJ, Koppetsch BS, Theurkauf WE (2001) In vivo analysis of Drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway. Cell 106:35–46

    Article  CAS  PubMed  Google Scholar 

  74. Ewen-Campen B, Donoughe S, Clarke DN et al (2013) Germ cell specification requires zygotic mechanisms rather than germ plasm in a basally branching insect. Curr Biol 23:835–842

    Article  CAS  PubMed  Google Scholar 

  75. Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    Article  CAS  PubMed  Google Scholar 

  76. Hegner RW (1908) Effects of removing the germ-cell determinants from the eggs of some chrysomelid beetles. Preliminary report. Biol Bull 16:19–26

    Article  Google Scholar 

  77. Kloc M, Bilinksi S, Etkin LD (2004) The balbiani body and germ cell determinants: 150 years later. Curr Top Dev Biol 59:1–36

    Article  CAS  PubMed  Google Scholar 

  78. Mahowald AP (2001) Assembly of the Drosophila germ plasm. Int Rev Cytol 203:187–213

    Article  CAS  PubMed  Google Scholar 

  79. Kobayashi S, Amikura R, Okada M (1994) Localization of mitochondrial large rRNA in germinal granules and the consequent segregation of germ line. Int J Dev Biol 38:193–199

    CAS  PubMed  Google Scholar 

  80. Arkov AL, Ramos A (2010) Building RNA-protein granules: insight from the germline. Trends Cell Biol 20:482–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Kirino Y, Vourekas A, Sayed N et al (2010) Arginine methylation of Aubergine mediates Tudor binding and germ plasm localization. RNA 16:70–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Ephrussi A, Lehmann R (1992) Induction of germ cell formation by oskar. Nature 358:387–392

    Article  CAS  PubMed  Google Scholar 

  83. Rongo C, Lehmann R (1996) Regulated synthesis, transport and assembly of the Drosophila germ plasm. Trends Genet 12:102–109

    Article  CAS  PubMed  Google Scholar 

  84. Starz-Gaiano M, Lehmann R (2001) Moving towards the next generation. Mech Dev 105:5–18

    Article  CAS  PubMed  Google Scholar 

  85. Markussen FH, Michon AM, Breitwieser W et al (1995) Translational control of oskar generates Short OSK, the isoform that induces pole plasm assembly. Development 121:3723–3732

    CAS  PubMed  Google Scholar 

  86. Saffman EE, Lasko P (1999) Germline development in vertebrates and invertebrates. Cell Mol Life Sci 55:1141–1163

    Article  CAS  PubMed  Google Scholar 

  87. Vanzo NF, Ephrussi A (2002) Oskar anchoring restricts pole plasm to the posterior of the Drosophila oocyte. Development 129:3705–3714

    CAS  PubMed  Google Scholar 

  88. Illmensee K, Mahowald AP (1974) Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc Natl Acad Sci U S A 71:1016–1020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. St Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 3:176–188

    Article  CAS  PubMed  Google Scholar 

  90. Venken KJ, Bellen HJ (2014) Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster. Methods 68:15–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Spradling AC, Rubin GM (1982) Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218:341–347

    Article  CAS  PubMed  Google Scholar 

  92. Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353

    Article  CAS  PubMed  Google Scholar 

  93. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  94. Duffy JB (2002) GAL4 system in Drosophila: A fly geneticist’s Swiss army knife. Genesis 34:1–15

    Article  CAS  PubMed  Google Scholar 

  95. Jory A, Estella C, Giorgianni MW et al (2012) A survey of 6,300 genomic fragments for cis-regulatory activity in the imaginal discs of Drosophila melanogaster. Cell Rep 2:1014–1024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Manning L, Heckscher ES, Purice MD et al (2012) A resource for manipulating gene expression and analyzing cis-regulatory modules in the Drosophila CNS. Cell Rep 2:1002–1013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Pfeiffer BD, Jenett A, Hammonds AS et al (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci U S A 105:9715–9720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Jenett A, Rubin GM, Ngo TT et al (2012) A GAL4-Driver line resource for Drosophila neurobiology. Cell Rep 2:991–1001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Bloomington Drosophila Stock Center. http://flystocks.bio.indiana.edu

  100. Vienna Drosophila RNAi Center (VDRC). http://stockcenter.vdrc.at/control/main

  101. Kyoto Drosophila Genetic Resource Center (DGRC). https://kyotofly.kit.jp/cgi-bin/stocks/index.cgi

  102. Rørth P (1998) Gal4 in the Drosophila female germline. Mech Dev 78:113–118

    Article  PubMed  Google Scholar 

  103. Hudson AM, Cooley L (2014) Methods for studying oogenesis. Methods 68:207–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Drosophila Transgenic RNAi Project (TRiP). http://www.flyrnai.org/TRiP-HOME.html

  105. Ni JQ, Markstein M, Binari R et al (2008) Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nat Methods 5:49–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Dietzl G, Chen D, Schnorrer F et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156

    Article  CAS  PubMed  Google Scholar 

  107. Czech B, Preall JB, McGinn J et al (2013) A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol Cell 50:749–761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Handler D, Meixner K, Pizka M et al (2013) The genetic makeup of the Drosophila piRNA pathway. Mol Cell 50:762–777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Preall JB, Czech B, Guzzardo PM et al (2012) shutdown is a component of the Drosophila piRNA biogenesis machinery. RNA 18:1446–1457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. McConnell KH, Dixon M, Calvi BR (2012) The histone acetyltransferases CBP and Chameau integrate developmental and DNA replication programs in Drosophila ovarian follicle cells. Development 139:3880–3890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Geisbrecht ER, Sawant K, Su Y et al (2013) Genetic interaction screens identify a role for Hedgehog signaling in Drosophila border cell migration. Dev Dyn 242:414–431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Gu T, Elgin SC (2013) Maternal depletion of Piwi, a component of the RNAi system, impacts heterochromatin formation in Drosophila. PLoS Genet. doi:10.1371/journal.pgen.1003780

    Google Scholar 

  113. Pfeiffer BD, Ngo TT, Hibbard KL et al (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186:735–755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. del Valle Rodriguez A, Didiano D, Desplan C (2012) Power tools for gene expression and clonal analysis in Drosophila. Nat Methods 9:47–55

    Article  CAS  Google Scholar 

  115. Xu T, Rubin GM (2012) The effort to make mosaic analysis a household tool. Development 139:4501–4503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Patterson JT (1929) The production of mutations in somatic cells of Drosophila melanogaster by means of X-rays. J Exp Zool 53:327–372

    Article  Google Scholar 

  117. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499–509

    Article  CAS  PubMed  Google Scholar 

  118. McLean PF, Cooley L (2013) Protein equilibration through somatic ring canals in Drosophila. Science 340:1445–1447

    Article  CAS  PubMed  Google Scholar 

  119. Perrimon N (1984) Clonal analysis of dominant female-sterile germline-dependent mutations in Drosophila melanogaster. Genetics 108:927–939

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Perrimon N, Gans M (1983) Clonal analysis of the tissue specificity of recessive female-sterile mutations of Drosophila melanogaster using a dominant female-sterile mutation Fs(1)K1237. Dev Biol 100:365–373

    Article  CAS  PubMed  Google Scholar 

  121. Chou TB, Perrimon N (1996) The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144:1673–1679

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  123. Karginov FV, Hannon GJ (2010) The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell 37:7–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Bassett AR, Liu JL (2014) CRISPR/Cas9 and genome editing in Drosophila. J Genet Genomics 41:7–19

    Article  CAS  PubMed  Google Scholar 

  127. Gratz SJ, Cummings AM, Nguyen JN et al (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194:1029–1035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Gratz SJ, Ukken FP, Rubinstein CD et al (2014) Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196:961–971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Port F, Chen HM, Lee T et al (2014) Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A 111:2967–2976

    Article  CAS  Google Scholar 

  130. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. CRISPR Genome-Engineering. http://www.genome-engineering.org/crispr/

Download references

Acknowledgements

We thank Emily Hudson for assistance with the art included in the figures, and members of the Bratu laboratory for helpful comments on the manuscript. JMM and DPB were supported by an NSF CAREER Award to DPB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana P. Bratu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

McLaughlin, J.M., Bratu, D.P. (2015). Drosophila melanogaster Oogenesis: An Overview. In: Bratu, D., McNeil, G. (eds) Drosophila Oogenesis. Methods in Molecular Biology, vol 1328. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2851-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2851-4_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2850-7

  • Online ISBN: 978-1-4939-2851-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics