Skip to main content

Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior

  • Protocol
Book cover C. elegans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1327))

Abstract

Optogenetics was introduced as a new technology in the neurosciences about a decade ago (Zemelman et al., Neuron 33:15–22, 2002; Boyden et al., Nat Neurosci 8:1263–1268, 2005; Nagel et al., Curr Biol 15:2279–2284, 2005; Zemelman et al., Proc Natl Acad Sci USA 100:1352–1357, 2003). It combines optics, genetics, and bioengineering to render neurons sensitive to light, in order to achieve a precise, exogenous, and noninvasive control of membrane potential, intracellular signaling, network activity, or behavior (Rein and Deussing, Mol Genet Genomics 287:95–109, 2012; Yizhar et al., Neuron 71:9–34, 2011). As C. elegans is transparent, genetically amenable, has a small nervous system mapped with synapse resolution, and exhibits a rich behavioral repertoire, it is especially open to optogenetic methods (White et al., Philos Trans R Soc Lond B Biol Sci 314:1–340, 1986; De Bono et al., Optogenetic actuation, inhibition, modulation and readout for neuronal networks generating behavior in the nematode Caenorhabditis elegans, In: Hegemann P, Sigrist SJ (eds) Optogenetics, De Gruyter, Berlin, 2013; Husson et al., Biol Cell 105:235–250, 2013; Xu and Kim, Nat Rev Genet 12:793–801, 2011). Optogenetics, by now an “exploding” field, comprises a repertoire of different tools ranging from transgenically expressed photo-sensor proteins (Boyden et al., Nat Neurosci 8:1263–1268, 2005; Nagel et al., Curr Biol 15:2279–2284, 2005) or cascades (Zemelman et al., Neuron 33:15–22, 2002) to chemical biology approaches, using photochromic ligands of endogenous channels (Szobota et al., Neuron 54:535–545, 2007). Here, we will focus only on optogenetics utilizing microbial rhodopsins, as these are most easily and most widely applied in C. elegans. For other optogenetic tools, for example the photoactivated adenylyl cyclases (PACs, that drive neuronal activity by increasing synaptic vesicle priming, thus exaggerating rather than overriding the intrinsic activity of a neuron, as occurs with rhodopsins), we refer to other literature (Weissenberger et al., J Neurochem 116:616–625, 2011; Steuer Costa et al., Photoactivated adenylyl cyclases as optogenetic modulators of neuronal activity, In: Cambridge S (ed) Photswitching proteins, Springer, New York, 2014). In this chapter, we will give an overview of rhodopsin-based optogenetic tools, their properties and function, as well as their combination with genetically encoded indicators of neuronal activity. As there is not “the” single optogenetic experiment we could describe here, we will focus more on general concepts and “dos and don’ts” when designing an optogenetic experiment. We will also give some guidelines on which hardware to use, and then describe a typical example of an optogenetic experiment to analyze the function of the neuromuscular junction, and another application, which is Ca2+ imaging in body wall muscle, with upstream neuronal excitation using optogenetic stimulation. To obtain a more general overview of optogenetics and optogenetic tools, we refer the reader to an extensive collection of review articles, and in particular to volume 1148 of this book series, “Photoswitching Proteins.”

Caspar Glock and Jatin Nagpal contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314:1–340

    Article  CAS  PubMed  Google Scholar 

  2. Zemelman BV, Lee GA, Ng M, Miesenbock G (2002) Selective photostimulation of genetically chARGed neurons. Neuron 33:15–22

    Article  CAS  PubMed  Google Scholar 

  3. Zemelman BV, Nesnas N, Lee GA, Miesenbock G (2003) Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc Natl Acad Sci USA 100:1352–1357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Rein ML, Deussing JM (2012) The optogenetic (r)evolution. Mol Genet Genomics 287:95–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. De Bono M, Schafer WR, Gottschalk A (2013) Optogenetic actuation, inhibition, modulation and readout for neuronal networks generating behavior in the nematode Caenorhabditis elegans. In: Hegemann P, Sigrist SJ (eds) Optogenetics. De Gruyter, Berlin

    Google Scholar 

  6. Szobota S, Gorostiza P, Del Bene F, Wyart C, Fortin DL, Kolstad KD, Tulyathan O, Volgraf M, Numano R, Aaron HL, Scott EK, Kramer RH, Flannery J, Baier H, Trauner D, Isacoff EY (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54:535–545

    Article  CAS  PubMed  Google Scholar 

  7. Weissenberger S, Schultheis C, Liewald JF, Erbguth K, Nagel G, Gottschalk A (2011) PACalpha—an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem 116:616–625

    Article  CAS  PubMed  Google Scholar 

  8. Steuer Costa W, Liewald J, Gottschalk A (2014) Photoactivated adenylyl cyclases as optogenetic modulators of neuronal activity. In: Cambridge S (ed) Photswitching proteins, vol 1148, Methods in molecular biology. Springer, New York, pp 161–175

    Chapter  Google Scholar 

  9. Xu X, Kim SK (2011) The early bird catches the worm: new technologies for the Caenorhabditis elegans toolkit. Nat Rev Genet 12:793–801

    Article  CAS  PubMed  Google Scholar 

  10. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412

    Article  CAS  PubMed  Google Scholar 

  11. Bamann C, Kirsch T, Nagel G, Bamberg E (2008) Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J Mol Biol 375:686–694

    Article  CAS  PubMed  Google Scholar 

  12. Stehfest K, Hegemann P (2010) Evolution of the channelrhodopsin photocycle model. Chemphyschem 11:1120–1126

    Article  CAS  PubMed  Google Scholar 

  13. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    Article  CAS  PubMed  Google Scholar 

  14. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  16. Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    Article  CAS  PubMed  Google Scholar 

  17. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

  18. Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Husson SH, Liewald JF, Schultheis C, Stirman JN, Lu H, Gottschalk A (2012) Microbial light-activatable proton pumps as neuronal inhibitors to functionally dissect neuronal networks in C. elegans. PLoS One 7, e40937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Mattis J, Tye KM, Ferenczi EA, Ramakrishnan C, O’Shea DJ, Prakash R, Gunaydin LA, Hyun M, Fenno LE, Gradinaru V, Yizhar O, Deisseroth K (2011) Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9:159–172

    Article  PubMed Central  PubMed  Google Scholar 

  21. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71:9–34

    Article  CAS  PubMed  Google Scholar 

  22. Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, Deisseroth K (2007) Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 27:14231–14238

    Article  CAS  PubMed  Google Scholar 

  23. Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10:663–668

    Article  CAS  PubMed  Google Scholar 

  24. Liewald JF, Brauner M, Stephens GJ, Bouhours M, Schultheis C, Zhen M, Gottschalk A (2008) Optogenetic analysis of synaptic function. Nat Methods 5:895–902

    Article  CAS  PubMed  Google Scholar 

  25. Liu Q, Hollopeter G, Jorgensen EM (2009) Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction. Proc Natl Acad Sci USA 106:10823–10828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Schultheis C, Brauner M, Liewald JF, Gottschalk A (2011) Optogenetic analysis of GABAB receptor signaling in Caenorhabditis elegans motor neurons. J Neurophysiol 106:817–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Stirman JN, Brauner M, Gottschalk A, Lu H (2010) High-throughput study of synaptic transmission at the neuromuscular junction enabled by optogenetics and microfluidics. J Neurosci Methods 191:90–93

    Article  PubMed Central  PubMed  Google Scholar 

  28. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  CAS  PubMed  Google Scholar 

  29. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141

    Article  CAS  PubMed  Google Scholar 

  30. Guo ZV, Hart AC, Ramanathan S (2009) Optical interrogation of neural circuits in Caenorhabditis elegans. Nat Methods 6:891–896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Schultheis C, Liewald JF, Bamberg E, Nagel G, Gottschalk A (2011) Optogenetic long-term manipulation of behavior and animal development. PLoS One 6, e18766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Husson SJ, Costa WS, Wabnig S, Stirman JN, Watson JD, Spencer WC, Akerboom J, Looger LL, Treinin M, Miller DM III, Lu H, Gottschalk A (2012) Optogenetic analysis of a nociceptor neuron and network reveals ion channels acting downstream of primary sensors. Curr Biol 22:743–752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Stirman JN, Crane MM, Husson SJ, Wabnig S, Schultheis C, Gottschalk A, Lu H (2011) Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. Nat Methods 8:153–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Leifer AM, Fang-Yen C, Gershow M, Alkema MJ, Samuel AD (2011) Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nat Methods 8:147–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Piggott BJ, Liu J, Feng Z, Wescott SA, Xu XZS (2011) The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell 147:922–933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kocabas A, Shen CH, Guo ZV, Ramanathan S (2012) Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour. Nature 490:273–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Pirri JK, McPherson AD, Donnelly JL, Francis MM, Alkema MJ (2009) A tyramine-gated chloride channel coordinates distinct motor programs of a Caenorhabditis elegans escape response. Neuron 62:526–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Busch KE, Laurent P, Soltesz Z, Murphy RJ, Faivre O, Hedwig B, Thomas M, Smith HL, de Bono M (2012) Tonic signaling from O(2) sensors sets neural circuit activity and behavioral state. Nat Neurosci 15:581–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Zimmer M, Gray JM, Pokala N, Chang AJ, Karow DS, Marletta MA, Hudson ML, Morton DB, Chronis N, Bargmann CI (2009) Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron 61:865–879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kateriya S, Nagel G, Bamberg E, Hegemann P (2004) “Vision” in single-celled algae. News Physiol Sci 19:133–137

    CAS  PubMed  Google Scholar 

  41. Lawson MA, Zacks DN, Derguini F, Nakanishi K, Spudich JL (1991) Retinal analog restoration of photophobic responses in a blind Chlamydomonas reinhardtii mutant. Evidence for an archaebacterial like chromophore in a eukaryotic rhodopsin. Biophys J 60:1490–1498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, Deisseroth K, Nureki O (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Feldbauer K, Zimmermann D, Pintschovius V, Spitz J, Bamann C, Bamberg E (2009) Channelrhodopsin-2 is a leaky proton pump. Proc Natl Acad Sci U S A 106:12317–12322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Husson SJ, Gottschalk A, Leifer AM (2013) Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour. Biol Cell 105:235–250

    Article  CAS  PubMed  Google Scholar 

  45. Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ (2008) Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy. J Biol Chem 283:35033–35041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P (2010) Ultrafast optogenetic control. Nat Neurosci 13:387–392

    Article  CAS  PubMed  Google Scholar 

  47. Haupts U, Tittor J, Bamberg E, Oesterhelt D (1997) General concept for ion translocation by halobacterial retinal proteins: the isomerization/switch/transfer (IST) model. Biochemistry 36:2–7

    Article  CAS  PubMed  Google Scholar 

  48. Lin JY, Lin MZ, Steinbach P, Tsien RY (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96:1803–1814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Watanabe S, Liu Q, Davis MW, Hollopeter G, Thomas N, Jorgensen NB, Jorgensen EM (2013) Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions. eLife 2, e00723

    Article  PubMed Central  PubMed  Google Scholar 

  50. Berndt A, Schoenenberger P, Mattis J, Tye KM, Deisseroth K, Hegemann P, Oertner TG (2011) High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci USA 108:7595–7600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Erbguth K, Prigge M, Schneider F, Hegemann P, Gottschalk A (2012) Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans. PLoS One 7, e46827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG, Bamann C, Bamberg E (2011) Ultra light-sensitive and fast neuronal activation with the Ca(2) + -permeable channelrhodopsin CatCh. Nat Neurosci 14:513–518

    Article  CAS  PubMed  Google Scholar 

  53. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Bamann C, Gueta R, Kleinlogel S, Nagel G, Bamberg E (2010) Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry 49:267–278

    Article  CAS  PubMed  Google Scholar 

  55. Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234

    Article  CAS  PubMed  Google Scholar 

  56. Prigge M, Schneider F, Tsunoda SP, Shilyansky C, Wietek J, Deisseroth K, Hegemann P (2012) Color-tuned channelrhodopsins for multiwavelength optogenetics. J Biol Chem 287:31804–31812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–139

    Article  PubMed Central  PubMed  Google Scholar 

  58. Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Miller KG, Alfonso A, Nguyen M, Crowell JA, Johnson CD, Rand JB (1996) A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc Natl Acad Sci USA 93:12593–12598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Richmond J (2005) Synaptic function. WormBook 1–14

    Google Scholar 

  61. Richmond JE (2006) Electrophysiological recordings from the neuromuscular junction of C. elegans. WormBook 1–8

    Google Scholar 

  62. Francis MM, Maricq AV (2006) Electrophysiological analysis of neuronal and muscle function in C. elegans. Methods Mol Biol 351:175–192

    CAS  PubMed  Google Scholar 

  63. Sieburth D, Ch’ng Q, Dybbs M, Tavazoie M, Kennedy S, Wang D, Dupuy D, Rual JF, Hill DE, Vidal M, Ruvkun G, Kaplan JM (2005) Systematic analysis of genes required for synapse structure and function. Nature 436:510–517

    Article  CAS  PubMed  Google Scholar 

  64. Kittelmann M, Liewald JF, Hegermann J, Schultheis C, Brauner M, Steuer Costa W, Wabnig S, Eimer S, Gottschalk A (2013) In vivo synaptic recovery following optogenetic hyperstimulation. Proc Natl Acad Sci 110(32):E3007–E3016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Davis MW, Morton JJ, Carroll D, Jorgensen EM (2008) Gene activation using FLP recombinase in C. elegans. PLoS Genet 4, e1000028

    Article  PubMed Central  PubMed  Google Scholar 

  66. Macosko EZ, Pokala N, Feinberg EH, Chalasani SH, Butcher RA, Clardy J, Bargmann CI (2009) A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458:1171–1175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Schmitt C, Schultheis C, Pokala N, Husson SJ, Liewald JF, Bargmann CI, Gottschalk A (2012) Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans. PLoS One 7, e43164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Voutev R, Hubbard EJ (2008) A “FLP-Out” system for controlled gene expression in Caenorhabditis elegans. Genetics 180:103–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Stirman JN, Crane MM, Husson SJ, Gottschalk A, Lu H (2012) A multispectral optical illumination system with precise spatiotemporal control for the manipulation of optogenetic reagents. Nat Protoc 7:207–220

    Article  CAS  PubMed  Google Scholar 

  70. Richmond JE, Davis WS, Jorgensen EM (1999) UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci 2:959–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Husson SJ et al. (2012) Keeping track of worm trackers. WormBook, ed. The C. elegans Research Community. WormBook. doi/10.1895/wormbook.1.156.1, http://www.wormbook.org.

  72. Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS (2008) Dimensionality and dynamics in the behavior of C. elegans. PLoS Comput Biol 4, e1000028

    Article  PubMed Central  PubMed  Google Scholar 

  73. Baird GS, Zacharias DA, Tsien RY (1999) Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci USA 96:11241–11246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderon NC, Esposti F, Borghuis BG, Sun XR, Gordus A, Orger MB, Portugues R, Engert F, Macklin JJ, Filosa A, Aggarwal A, Kerr RA, Takagi R, Kracun S, Shigetomi E, Khakh BS, Baier H, Lagnado L, Wang SS, Bargmann CI, Kimmel BE, Jayaraman V, Svoboda K, Kim DS, Schreiter ER, Looger LL (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32:13819–13840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, Reiff DF, Levelt C, Borst A, Bonhoeffer T, Hubener M, Griesbeck O (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811

    Article  CAS  PubMed  Google Scholar 

  77. Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE (2011) An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333:1888–1891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Kerr R, Lev-Ram V, Baird G, Vincent P, Tsien RY, Schafer WR (2000) Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26:583–594

    Article  CAS  PubMed  Google Scholar 

  79. Hilliard MA, Apicella AJ, Kerr R, Suzuki H, Bazzicalupo P, Schafer WR (2005) In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J 24:63–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Suzuki H, Kerr R, Bianchi L, Frokjaer-Jensen C, Slone D, Xue J, Gerstbrein B, Driscoll M, Schafer WR (2003) In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39:1005–1017

    Article  CAS  PubMed  Google Scholar 

  81. Suzuki H, Thiele TR, Faumont S, Ezcurra M, Lockery SR, Schafer WR (2008) Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature 454:114–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101:10554–10559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci USA 98:3197–3202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Kerr RA, Schafer WR (2006) Intracellular Ca2+ imaging in C. elegans. Methods Mol Biol 351:253–264

    CAS  PubMed  Google Scholar 

  85. Akerboom J, Carreras Calderón N, Tian L, Wabnig S, Prigge M, Tolö J, Gordus A, Orger MB, Severi KE, Macklin JJ, Patel R, Pulver SR, Wardill TJ, Fischer E, Schüler C, Chen T-W, Sarkisyan KS, Marvin JS, Bargmann CI, Kim DS, Kügler S, Lagnado L, Hegemann P, Gottschalk A, Schreiter ER, Looger LL (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Kim E, Sun L, Gabel CV, Fang-Yen C (2013) Long-term imaging of Caenorhabditis elegans using nanoparticle-mediated immobilization. PLoS One 8, e53419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Frokjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen SP, Grunnet M, Jorgensen EM (2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40:1375–1383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Edwards SL, Charlie NK, Milfort MC, Brown BS, Gravlin CN, Knecht JE, Miller KG (2008) A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol 6, e198

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gottschalk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Glock, C., Nagpal, J., Gottschalk, A. (2015). Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior. In: Biron, D., Haspel, G. (eds) C. elegans. Methods in Molecular Biology, vol 1327. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4939-2842-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2842-2_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4939-2841-5

  • Online ISBN: 978-1-4939-2842-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics