Skip to main content

Functional Detection of Novel Triheteromeric NMDA Receptors

  • Protocol

Part of the book series: Neuromethods ((NM,volume 106))

Abstract

Studies of higher order brain function, including learning and memory, require understanding of mechanisms that underlie changes in synaptic strength brought about by NMDA receptor activation. Studies with recombinant receptors have demonstrated that variation in subunit composition imparts functional diversity to NMDA receptors; however the exact makeup of native receptors is not known. Therefore, it is important to evaluate receptors functionally under minimal disruption, such as in acute brain slices, where pathways are relatively intact and potentially non-overlapping. NMDA receptors have traditionally been considered to be diheteromeric, composed of duplicate sets of GluN1/GluN2 or GluN1/GluN3 pairs. However, the substantial overlap in the expression of all three subunits also permits the existence of triheteromeric NMDA receptors, composed of GluN1, GluN2, and GluN3 (designated as t-NMDARs). Here, I describe a combined electrophysiological and pharmacological approach developed in my lab that can be used to evaluate functional triheteromeric NMDA receptors in acute brain slices.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Das S et al (1998) Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393(6683):377–381

    Article  CAS  PubMed  Google Scholar 

  2. Chatterton JE et al (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415(6873):793–798

    Article  CAS  PubMed  Google Scholar 

  3. Ciabarra AM et al (1995) Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 15(10):6498–6508

    CAS  PubMed  Google Scholar 

  4. Sucher NJ et al (1995) Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 15(10):6509–6520

    CAS  PubMed  Google Scholar 

  5. Lein ES et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176

    Article  CAS  PubMed  Google Scholar 

  6. Pilli J, Kumar SS (2012) Triheteromeric N-methyl-d-aspartate receptors differentiate synaptic inputs onto pyramidal neurons in somatosensory cortex: Involvement of the GluN3A subunit. Neuroscience 222:75–88

    Article  CAS  PubMed  Google Scholar 

  7. Tovar KR, McGinley MJ, Westbrook GL (2013) Triheteromeric NMDA receptors at hippocampal synapses. J Neurosci 33(21):9150–9160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Dingledine R et al (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    CAS  PubMed  Google Scholar 

  9. Monyer H et al (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12(3):529–540

    Article  CAS  PubMed  Google Scholar 

  10. Yao Y, Mayer ML (2006) Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A. J Neurosci 26(17):4559–4566

    Article  CAS  PubMed  Google Scholar 

  11. Benveniste M, Mayer ML (1991) Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys J 59(3):560–573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Clements JD, Westbrook GL (1991) Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 7(4):605–613

    Article  CAS  PubMed  Google Scholar 

  13. Kumar SS, Huguenard JR (2003) Pathway-specific differences in subunit composition of synaptic NMDA receptors on pyramidal neurons in neocortex. J Neurosci 23(31):10074–10083

    CAS  PubMed  Google Scholar 

  14. Agmon A, Connors BW (1991) Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41(2-3):365–379

    Article  CAS  PubMed  Google Scholar 

  15. Kumar SS, Huguenard JR (2001) Properties of excitatory synaptic connections mediated by the corpus callosum in the developing rat neocortex. J Neurophysiol 86(6):2973–2985

    CAS  PubMed  Google Scholar 

  16. Vicini S et al (1998) Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J Neurophysiol 79(2):555–566

    CAS  PubMed  Google Scholar 

  17. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309(5965):261–263

    Article  CAS  PubMed  Google Scholar 

  18. Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 394:501–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kumar SS et al (2002) A developmental switch of AMPA receptor subunits in neocortical pyramidal neurons. J Neurosci 22(8):3005–3015

    CAS  PubMed  Google Scholar 

  20. Nowak L et al (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465

    Article  CAS  PubMed  Google Scholar 

  21. Mayer ML, Vyklicky L Jr, Westbrook GL (1989) Modulation of excitatory amino acid receptors by group IIB metal cations in cultured mouse hippocampal neurones. J Physiol 415:329–350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Neyton J, Paoletti P (2006) Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach. J Neurosci 26(5):1331–1333

    Article  CAS  PubMed  Google Scholar 

  23. Chen L, Huang LY (1992) Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356(6369):521–523

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay S. Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kumar, S.S. (2016). Functional Detection of Novel Triheteromeric NMDA Receptors. In: Popescu, G. (eds) Ionotropic Glutamate Receptor Technologies. Neuromethods, vol 106. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2812-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2812-5_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2811-8

  • Online ISBN: 978-1-4939-2812-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics