Skip to main content

Investigating Membrane Interactions and Structures of CPPs

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1324))

Abstract

Despite many studies made on cell-penetrating peptides (CPPs), the mechanism of their cellular uptake and endosomal escape has not been completely resolved. This is even more unclear when the CPP is bound either covalently or non-covalently to the cargo molecules. To answer remaining questions, we require a combination of different methods, model systems, and experiments since there is no single method which could give a complete answer to all questions. Biophysical investigations of CPPs have a significant impact on CPP research considering their molecular mechanisms of action. In this chapter, we present different membrane model systems suitable for biophysical studies as well as the basic practical aspects underlying several common biophysical methods and experiments. The methods include fluorescence spectroscopy, circular dichroism spectroscopy, and dynamic light scattering and concern peptide-membrane interactions and vesicle model membrane leakage. We have also described the potential and limitations of biophysical studies on the CPP-membrane interactions and their impact on our understanding of how CPPs mediate the transport of cargoes into living cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Szoka F, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508

    Article  CAS  PubMed  Google Scholar 

  2. Lasic DD (1988) The mechanism of vesicle formation. Biochem J 256:1–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Jin AJ, Huster D, Gawrisch K, Nossal R (1999) Light scattering characterization of extruded lipid vesicles. Eur Biophys J 28:187–199

    Article  CAS  PubMed  Google Scholar 

  4. Bruce J, Berne RP (1976) Dynamic light scattering with applications to chemistry, biology and physics. Dover, Mineola, NY

    Google Scholar 

  5. Clark NA, Lunacek JH, Benedek GB (1970) A study of Brownian motion using light scattering. Am J Physiol 38:575–585

    Article  Google Scholar 

  6. Madani F, Perálvarez-Marín A, Gräslund A (2011) Liposome model systems to study the endosomal escape of cell-penetrating peptides: transport across phospholipid membranes induced by a proton gradient. J Drug Deliv 2011:1–7

    Article  Google Scholar 

  7. Magzoub M, Kilk K, Eriksson LEG, Langel Ü, Gräslund A (2001) Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles. Biochim Biophys Acta 1512:77–89

    Article  CAS  PubMed  Google Scholar 

  8. Bárány-Wallje E, Andersson A, Gräslund A, Mäler L (2004) NMR solution structure and position of transportan in neutral phospholipid bicelles. FEBS Lett 567:265–269

    Article  PubMed  Google Scholar 

  9. Lindberg M, Järvet J, Langel Ü, Gräslund A (2001) Secondary structure and position of the cell-penetrating peptide transportan in SDS micelles as determined by NMR. Biochemistry 40:3141–3149

    Google Scholar 

  10. Lindberg M, Biverståhl H, Gräslund A, Mäler L (2003) Structure and positioning comparison of two variants of penetratin in two different membrane mimicking systems by NMR. Eur J Biochem 270:3055–3063

    Article  CAS  PubMed  Google Scholar 

  11. Vasconcelos L, Madani F, Arukuusk P, Pärnaste L, Gräslund A, Langel Ü (2014) Effects of cargo molecules on membrane perturbation caused by transportan10 based cell-penetrating peptides. Biochim Biophys Acta 1838:3118–3129

    Article  CAS  PubMed  Google Scholar 

  12. Salomone F, Cardarelli F, Di Luca M, Boccardi C, Nifosì R, Bardi G, Di Bari L, Serresi M, Beltram F (2012) A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. J Control Release 163:293–303

    Article  CAS  PubMed  Google Scholar 

  13. Marshall AG (1978) Biophysical chemistry, principles, techniques and applications, 1st edn. John Wiley, New York, NY, pp 364–367

    Google Scholar 

  14. Berova N, Nakanishi K, Woody RW (2000) Circular dichroism, principles and applications, 2nd edn. Wiley-VCH Inc, New York, USA, pp 1–35, 55–95, 601–620

    Google Scholar 

  15. Eiríksdóttir E, Konate K, Langel Ü, Divita G, Deshayes S (2010) Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. Biochim Biophys Acta 1798:1119–1128

    Article  PubMed  Google Scholar 

  16. Arukuusk P, Pärnaste L, Margus H, Eriksson NK, Vasconcelos L, Padari K, Pooga M, Langel Ü (2013) Differential endosomal pathways for radically modified peptide vectors. Bioconjug Chem 24:1721–1732

    Article  CAS  PubMed  Google Scholar 

  17. Mäler L (2013) Solution NMR studies of cell-penetrating peptides in model membrane systems. Adv Drug Deliv Rev 65:1002–1011

    Article  PubMed  Google Scholar 

  18. Wüthrich K (2001) The way to NMR structures of proteins. Nat Struct Biol 8:923–925

    Article  PubMed  Google Scholar 

  19. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley & Sons, USA

    Google Scholar 

  20. Wüthrich K, Wider G, Wagner G, Braun W (1982) Sequential resonance assignments as a basis for determination of spatial protein structures by high-resolution proton nuclear magnetic-resonance. J Mol Biol 155:311–319

    Article  PubMed  Google Scholar 

  21. Wüthrich K (1990) Protein-structure determination in solution by NMR-spectroscopy. J Biol Chem 265:22059–22062

    PubMed  Google Scholar 

  22. Thorén PEG, Persson D, Esbjörner EK, Goksör M, Lincoln P, Nordén B (2004) Membrane binding and translocation of cell-penetrating peptides. Biochemistry 43:3471–3489

    Article  PubMed  Google Scholar 

  23. Magzoub M, Eriksson LEG, Gräslund A (2002) Conformational states of the cell-penetrating peptide penetratin when interacting with phospholipid vesicles: effects of surface charge and peptide concentration. Biochim Biophys Acta 1563:53–63

    Article  CAS  PubMed  Google Scholar 

  24. Magzoub M, Eriksson LEG, Gräslund A (2003) Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles. Biophys Chem 103:271–288

    Article  CAS  PubMed  Google Scholar 

  25. Guterstam P, Madani F, Hirose H, Takeuchi T, Futaki S, El Andaloussi S, Gräslund A, Langel Ü (2009) Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate. Biochim Biophys Acta 1788:2509–2517

    Article  CAS  PubMed  Google Scholar 

  26. Niesman MR, Khoobehi B, Peyman GA (1992) Encapsulation of sodium fluorescein for dye release studies. Invest Ophthalmol Vis Sci 33:2113–2119

    CAS  PubMed  Google Scholar 

  27. Schwarz G, Arbuzova A (1995) Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye. Biochim Biophys Acta 1239:51–57

    Article  PubMed  Google Scholar 

  28. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840

    Article  CAS  PubMed  Google Scholar 

  29. Ziegler A, Seeling J (2011) Contributions of glycosaminoglycan binding and clustering to the biological uptake of the nonamphipathic cell-penetrating peptide WR9. Biochemistry 50:4650–4664

    Article  CAS  PubMed  Google Scholar 

  30. Ziegler A (2008) Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Adv Drug Deliv Rev 60:580–597

    Article  CAS  PubMed  Google Scholar 

  31. Bárány-Wallje E, Keller S, Serowy S, Geibel S, Pohl P, Bienert M, Dathe M (2005) A critical reassessment of penetratin translocation across lipid membranes. Biophys J 89:2513–2521

    Article  PubMed Central  PubMed  Google Scholar 

  32. Magzoub M, Pramanik A, Gräslund A (2005) Modeling the endosomal escape of cell-penetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers. Biochemistry 44:14890–14897

    Article  CAS  PubMed  Google Scholar 

  33. Björklund J, Biverståhl H, Gräslund A, Mäler L, Brzezinski P (2006) Real-time transmembrane translocation of penetratin driven by light-generated proton pumping. Biophys J 91:29–31

    Article  Google Scholar 

  34. Terrone D, Sang SLW, Roudaia L, Silvius JR (2003) Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential. Biochemistry 42:13787–13799

    Article  CAS  PubMed  Google Scholar 

  35. Madani F, Lindberg S, Langel Ü, Futaki S, Gräslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:414729

    Article  PubMed Central  PubMed  Google Scholar 

  36. Madani F, Abdo R, Lindberg S, Hirose H, Futaki S, Langel Ü, Gräslund A (2013) Modeling the endosomal escape of cell-penetrating peptides using a transmembrane pH gradient. Biochim Biophys Acta 1828:1198–1204

    Article  CAS  PubMed  Google Scholar 

  37. Rigaud JL, Pitard B, Levy D (1995) Reconstitution of membrane-proteins into liposomes—application to energy-transducing membrane-proteins. Biochim Biophys Acta 1231:223–246

    Article  PubMed  Google Scholar 

  38. Maiolo JR, Ferrer M, Ottinger EA (2005) Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating epeptides. Biochim Biophys Acta 1712:161–172

    Article  CAS  PubMed  Google Scholar 

  39. Biondi B, Calderan A, Guiotto A, Ruzza P (2008) A comparative studies on lipid affinity of cell penetrating peptides in presence or absence of cargo. J Pept Sci 14:178–178

    Google Scholar 

  40. El-Andaloussi S, Järver P, Johansson HJ, Langel Ü (2007) Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: a comparative study. Biochem J 407:285–292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Bárány-Wallje E, Gaur J, Lundberg P, Langel Ü, Gräslund A (2007) Differential membrane perturbation caused by the cell penetrating peptide Tp10 depending on attached cargo. FEBS Lett 581:2389–2393

    Article  PubMed  Google Scholar 

  42. Oesterhelt D, Walther S (1974) Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol 31:667

    Article  CAS  PubMed  Google Scholar 

  43. Nayar R, Hope MJ, Cullis PR (1989) Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion technique. Biochim Biophys Acta 986:200–206

    Article  CAS  Google Scholar 

  44. Macdonald RC, Macdonald RI, Menco BPM, Takeshita K, Subbarao NK, Hu LR (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1061:297–303

    Article  CAS  PubMed  Google Scholar 

  45. Frisken BJ, Asman C, Patty PJ (2000) Studies of vesicle extrusion. Langmuir 16:928–933

    Article  CAS  Google Scholar 

  46. Mayer LD, Hope MJ, Cullis PR (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta 858:161–168

    Article  CAS  PubMed  Google Scholar 

  47. Paternostre MT, Roux M, Rigaud JL (1988) Mechanisms of membrane-protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by Triton X-100, octyl glucoside, and sodium cholate. Biochemistry 27:2668–2677

    Article  CAS  PubMed  Google Scholar 

  48. Rigaud JL, Paternostre MT, Bluzat A (1988) Mechanisms of membrane-protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry 27:2677–2688

    Article  CAS  PubMed  Google Scholar 

  49. Heberle J (2000) Proton transfer reactions across bacteriorhodopsin and along the membrane. Biochim Biophys Acta 1458:135–147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Research in this field in the author’s laboratory is supported by the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Madani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Madani, F., Gräslund, A. (2015). Investigating Membrane Interactions and Structures of CPPs. In: Langel, Ü. (eds) Cell-Penetrating Peptides. Methods in Molecular Biology, vol 1324. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2806-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2806-4_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2805-7

  • Online ISBN: 978-1-4939-2806-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics