Skip to main content

High-Content Screening: Understanding and Managing Mechanistic Data to Better Predict Toxicity

  • Protocol
Computational Systems Toxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 928 Accesses

Abstract

An increased understanding of the cellular pathways involved in toxicity responses, coupled with a simultaneous advance in technology, has allowed for a shift in the way that the safety assessment of novel chemicals is performed. The development of assays that offer a high-throughput and low-cost option in comparison to more traditional approaches has been a focus of recent years.

Early identification of compounds which have the potential to cause Drug Induced Liver Injury (DILI) remains a major challenge for the pharmaceutical industry. Improvements in the mechanistic understanding of the cellular processes involved in this complex response have allowed for models to be generated and more reliable predictions to be made.

High-Content Screening (HCS) describes an approach whereby multiple end points can be monitored in a single assay. The focus of this chapter is to introduce HCS with relation to using automated fluorescence microscopy in order to assess phenotypic changes within cells and, more specifically, how this can be incorporated into the drug discovery process.

We discuss the advantages that HCS can offer, whilst highlighting important factors to take into account when considering establishing the approach within a laboratory. Four papers whereby HCS has been used to highlight the potential of compounds to cause DILI are reviewed and compared. In addition, an option for including HCS as part of a wider workflow to identify environmental toxicants is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gasparri F (2009) An overview of cell phenotypes in HCS: limitations and advantages. Expert Opin Drug Discov 4(6):643–657

    Article  CAS  PubMed  Google Scholar 

  2. Persson M et al (2014) High-content analysis/screening for predictive toxicology: application to hepatotoxicity and genotoxicity. Basic Clin Pharmacol Toxicol 115(1):18–23

    Article  CAS  PubMed  Google Scholar 

  3. Morgan S et al (2011) The cost of drug development: a systematic review. Health Policy 100(1):4–17

    Article  PubMed  Google Scholar 

  4. U.S. Department of Health and Human (2009) Services Food and Drug Administration Center for Drug Evaluation and Research and Center for Biologics Evaluation and Research. Guidance for Industry Drug-Induced Liver Injury: Premarketing Clinical Evaluation

    Google Scholar 

  5. O’Brien PJ et al (2006) High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol 80(9):580–604

    Article  PubMed  Google Scholar 

  6. Xu JJ et al (2008) Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci 105(1):97–105

    Article  CAS  PubMed  Google Scholar 

  7. Trosko JE, Upham BL (2010) A paradigm shift is required for the risk assessment of potential human health after exposure to low level chemical exposures: a response to the toxicity testing in the 21st century report. Int J Toxicol 29(4):344–357

    Article  CAS  PubMed  Google Scholar 

  8. Bhattacharya S et al (2011) Toxicity testing in the 21 century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. PLoS One 6(6), e20887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Tice RR et al (2013) Improving the human hazard characterization of chemicals: a Tox21 update. Environ Health Perspect 121(7):756–765

    Article  PubMed Central  PubMed  Google Scholar 

  10. Andrade RJ et al (2006) Outcome of acute idiosyncratic drug-induced liver injury: long-term follow-up in a hepatotoxicity registry. Hepatology 44(6):1581–1588

    Article  CAS  PubMed  Google Scholar 

  11. Persson M et al (2013) A high content screening assay to predict human drug-induced liver injury during drug discovery. J Pharmacol Toxicol Methods 68(3):302–313

    Article  CAS  PubMed  Google Scholar 

  12. O’Brien PJ (2014) High-content analysis in toxicology: screening substances for human toxicity potential, elucidating subcellular mechanisms and in vivo use as translational safety biomarkers. Basic Clin Pharmacol Toxicol 115(1):4–17

    Article  PubMed  Google Scholar 

  13. Tolosa L et al (2012) Development of a multiparametric cell-based protocol to screen and classify the hepatotoxicity potential of drugs. Toxicol Sci 127(1):187–198

    Article  CAS  PubMed  Google Scholar 

  14. Wilson CJ et al (2006) Identification of a small molecule that induces mitotic arrest using a simplified high-content screening assay and data analysis method. J Biomol Screen 11(1):21–28

    Article  CAS  PubMed  Google Scholar 

  15. Gerets HH et al (2012) Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol 28(2):69–87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Brazma A et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29(4):365–371

    Article  CAS  PubMed  Google Scholar 

  17. Collins MA (2009) Generating ‘omic knowledge’: the role of informatics in high content screening. Comb Chem High Throughput Screen 12(9):917–925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chen M et al (2014) A testing strategy to predict risk for drug-induced liver injury in humans using high-content screen assays and the ‘rule-of-two’ model. Arch Toxicol 88(7):1439–1449

    Article  CAS  PubMed  Google Scholar 

  19. Li N, Stojanovski S, Maechler P (2012) Mitochondrial hormesis in pancreatic beta cells: does uncoupling protein 2 play a role? Oxid Med Cell Longev 2012:740849

    PubMed Central  PubMed  Google Scholar 

  20. Zock JM (2009) Applications of high content screening in life science research. Comb Chem High Throughput Screen 12(9):870–876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. van de Water FM et al (2011) High content screening analysis of phospholipidosis: validation of a 96-well assay with CHO-K1 and HepG2 cells for the prediction of in vivo based phospholipidosis. Toxicol In Vitro 25(8):1870–1882

    Article  PubMed  Google Scholar 

  22. Fowler P et al (2012) Reduction of misleading (“false”) positive results in mammalian cell genotoxicity assays. II Importance of accurate toxicity measurement. Mutat Res 747(1):104–117

    Article  CAS  PubMed  Google Scholar 

  23. Westerink WM, Schoonen WG (2007) Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol In Vitro 21(8):1581–1591

    Article  CAS  PubMed  Google Scholar 

  24. Garcia-Canton C, Anadon A, Meredith C (2013) Assessment of the in vitro gammaH2AX assay by High Content Screening as a novel genotoxicity test. Mutat Res 757(2):158–166

    Article  CAS  PubMed  Google Scholar 

  25. Amacher DE (2011) Strategies for the early detection of drug-induced hepatic steatosis in preclinical drug safety evaluation studies. Toxicology 279(1-3):10–18

    Article  CAS  PubMed  Google Scholar 

  26. Donato MT et al (2012) High-content imaging technology for the evaluation of drug-induced steatosis using a multiparametric cell-based assay. J Biomol Screen 17(3):394–400

    Article  CAS  PubMed  Google Scholar 

  27. Tsamou M et al (2012) Performance of in vitro gammaH2AX assay in HepG2 cells to predict in vivo genotoxicity. Mutagenesis 27(6):645–652

    Article  CAS  PubMed  Google Scholar 

  28. Smart DJ et al (2011) Genotoxicity screening via the gammaH2AX by flow assay. Mutat Res 715(1–2):25–31

    Article  CAS  PubMed  Google Scholar 

  29. Kirkland D et al (2005) Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutat Res 584(1-2):1–256

    Article  CAS  PubMed  Google Scholar 

  30. Ploemen JP et al (2004) Use of physicochemical calculation of pKa and CLogP to predict phospholipidosis-inducing potential: a case study with structurally related piperazines. Exp Toxicol Pathol 55(5):347–355

    CAS  PubMed  Google Scholar 

  31. Bhandari N et al (2008) Phospholipidosis assay in HepG2 cells and rat or rhesus hepatocytes using phospholipid probe NBD-PE. Assay Drug Dev Technol 6(3):407–419

    Article  CAS  PubMed  Google Scholar 

  32. Kaplowitz N (2005) Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 4(6):489–499

    Article  CAS  PubMed  Google Scholar 

  33. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3(8):711–715

    Article  CAS  PubMed  Google Scholar 

  34. Fung M et al (2001) Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets-1960 to 1999*. Drug Inform J 35(1):293–317

    Google Scholar 

  35. Chen M et al (2011) FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today 16(15-16):697–703

    Article  PubMed  Google Scholar 

  36. Park BK, Pirmohamed M, Kitteringham NR (1998) Role of drug disposition in drug hypersensitivity: a chemical, molecular, and clinical perspective. Chem Res Toxicol 11(9):969–988

    Article  CAS  PubMed  Google Scholar 

  37. Uetrecht J (2009) Immunoallergic drug-induced liver injury in humans. Semin Liver Dis 29(4):383–392

    Article  CAS  PubMed  Google Scholar 

  38. Garside H et al (2014) Evaluation of the use of imaging parameters for the detection of compound-induced hepatotoxicity in 384-well cultures of HepG2 cells and cryopreserved primary human hepatocytes. Toxicol In Vitro 28(2):171–181

    Article  CAS  PubMed  Google Scholar 

  39. Hornberg JJ et al (2014) Exploratory toxicology as an integrated part of drug discovery. Part II: screening strategies. Drug Discov Today 19(8):1137–1144

    Article  CAS  PubMed  Google Scholar 

  40. Hornberg JJ et al (2014) Exploratory toxicology as an integrated part of drug discovery. Part I: why and how. Drug Discov Today 19(8):1131–1136

    Article  CAS  PubMed  Google Scholar 

  41. Chen M et al (2013) The liver toxicity knowledge Base: a systems approach to a complex end point. Clin Pharmacol Therapeutics 93(5):409–12

    Google Scholar 

  42. Mao X et al (2011) The tricyclic antidepressant amitriptyline inhibits D-cyclin transactivation and induces myeloma cell apoptosis by inhibiting histone deacetylases: in vitro and in silico evidence. Mol Pharmacol 79(4):672–680

    Article  CAS  PubMed  Google Scholar 

  43. Beigh MA et al (2014) Growth inhibition by bupivacaine is associated with inactivation of ribosomal protein S6 kinase 1. Biomed Res Int 2014:831–845

    Article  Google Scholar 

  44. Chou CF, Omary MB (1994) Mitotic arrest with anti-microtubule agents or okadaic acid is associated with increased glycoprotein terminal GlcNAc’s. J Cell Sci 107(Pt 7):1833–1843

    CAS  PubMed  Google Scholar 

  45. Osheroff N (1989) Effect of antineoplastic agents on the DNA cleavage/religation reaction of eukaryotic topoisomerase II: inhibition of DNA religation by etoposide. Biochemistry 28(15):6157–6160

    Article  CAS  PubMed  Google Scholar 

  46. Boquist L, Ericsson I (1984) Inhibition by alloxan of mitochondrial aconitase and other enzymes associated with the citric acid cycle. FEBS Lett 178(2):245–248

    Article  CAS  PubMed  Google Scholar 

  47. Liantonio A et al (2007) Fluvastatin and atorvastatin affect calcium homeostasis of rat skeletal muscle fibers in vivo and in vitro by impairing the sarcoplasmic reticulum/mitochondria Ca2 + -release system. J Pharmacol Exp Ther 321(2):626–634

    Article  CAS  PubMed  Google Scholar 

  48. Riley RJ, Workman P (1992) DT-diaphorase and cancer chemotherapy. Biochem Pharmacol 43(8):1657–1669

    Article  CAS  PubMed  Google Scholar 

  49. Wilkening S, Stahl F, Bader A (2003) Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties. Drug Metab Dispos 31(8):1035–1042

    Article  CAS  PubMed  Google Scholar 

  50. Gustafsson F et al (2014) A correlation between the in vitro drug toxicity of drugs to cell lines that express human P450s and their propensity to cause liver injury in humans. Toxicol Sci 137(1):189–211

    Article  CAS  PubMed  Google Scholar 

  51. Thompson RA et al (2012) In vitro approach to assess the potential for risk of idiosyncratic adverse reactions caused by candidate drugs. Chem Res Toxicol 25(8):1616–1632

    Article  CAS  PubMed  Google Scholar 

  52. Iskar M et al (2012) Drug discovery in the age of systems biology: the rise of computational approaches for data integration. Curr Opin Biotechnol 23(4):609–616

    Article  CAS  PubMed  Google Scholar 

  53. Chen M et al (2014) Toward predictive models for drug-induced liver injury in humans: are we there yet? Biomark Med 8(2):201–213

    Article  CAS  PubMed  Google Scholar 

  54. Cosgrove BD et al (2009) Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity. Toxicol Appl Pharmacol 237(3):317–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Andersen ME, Krewski D (2009) Toxicity testing in the 21st century: bringing the vision to life. Toxicol Sci 107(2):324–330

    Article  CAS  PubMed  Google Scholar 

  56. Hartung T (2009) A toxicology for the 21st century–mapping the road ahead. Toxicol Sci 109(1):18–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Hubal EA (2009) Biologically relevant exposure science for 21st century toxicity testing. Toxicol Sci 111(2):226–232

    Article  PubMed  Google Scholar 

  58. Andersen ME, Krewski D (2010) The vision of toxicity testing in the 21st century: moving from discussion to action. Toxicol Sci 117(1):17–24

    Article  CAS  PubMed  Google Scholar 

  59. Boekelheide K, Campion SN (2010) Toxicity testing in the 21st century: using the new toxicity testing paradigm to create a taxonomy of adverse effects. Toxicol Sci 114(1):20–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Krewski D et al (2011) New directions in toxicity testing. Annu Rev Public Health 32:161–178

    Article  PubMed  Google Scholar 

  61. Davis M et al (2013) The new revolution in toxicology: the good, the bad, and the ugly. Ann N Y Acad Sci 1278:11–24

    Article  PubMed  Google Scholar 

  62. Dourson M et al (2013) Advancing human health risk assessment: integrating recent advisory committee recommendations. Crit Rev Toxicol 43(6):467–492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. U.S.E.P. Agency (2013) Next generation risk assessment: incorporation of recent advances in molecular, computational, and systems biology (external review draft)

    Google Scholar 

  64. European Commission (2009) Alternative testing strategies progress report 2009. Replacing, reducing and refining use of animals in research

    Google Scholar 

  65. Collins FS, Gray GM, Bucher JR (2008) Toxicology. Transforming environmental health protection. Science 319(5865):906–907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Simmons SO, Fan CY, Ramabhadran R (2009) Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci 111(2):202–225

    Article  CAS  PubMed  Google Scholar 

  67. Lee E et al (2008) Inferring pathway activity toward precise disease classification. PLoS Comput Biol 4(11):e1000217

    Article  PubMed Central  PubMed  Google Scholar 

  68. Hoeng J et al (2012) A network-based approach to quantifying the impact of biologically active substances. Drug Discov Today 17(9-10):413–418

    Article  PubMed  Google Scholar 

  69. Martin F et al (2014) Quantification of biological network perturbations for mechanistic insight and diagnostics using two-layer causal models. BMC Bioinformatics 15:238

    Article  PubMed Central  PubMed  Google Scholar 

  70. Kramer A et al (2014) Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30(4):523–530

    Article  PubMed Central  PubMed  Google Scholar 

  71. Bourdon JA et al (2013) Gene expression profiling to identify potentially relevant disease outcomes and support human health risk assessment for carbon black nanoparticle exposure. Toxicology 303:83–93

    Article  CAS  PubMed  Google Scholar 

  72. Ideker T, Dutkowski J, Hood L (2011) Boosting signal-to-noise in complex biology: prior knowledge is power. Cell 144(6):860–863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  PubMed  Google Scholar 

  74. Fields WR et al (2005) Gene expression in normal human bronchial epithelial (NHBE) cells following in vitro exposure to cigarette smoke condensate. Toxicol Sci 86(1):84–91

    Article  CAS  PubMed  Google Scholar 

  75. Mathis C et al (2013) Human bronchial epithelial cells exposed in vitro to cigarette smoke at the air-liquid interface resemble bronchial epithelium from human smokers. Am J Physiol Lung Cell Mol Physiol 304(7):L489–L503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Gonzalez-Suarez I et al (2014) Systems biology approach for evaluating the biological impact of environmental toxicants in vitro. Chem Res Toxicol 27(3):367–376

    Article  CAS  PubMed  Google Scholar 

  77. Ding X, Kaminsky LS (2003) Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 43:149–173

    Article  CAS  PubMed  Google Scholar 

  78. Iskandar AR et al (2013) Systems approaches evaluating the perturbation of xenobiotic metabolism in response to cigarette smoke exposure in nasal and bronchial tissues. Biomed Res Int 2013:512086

    Article  PubMed Central  PubMed  Google Scholar 

  79. Slater AF et al (1995) Signalling mechanisms and oxidative stress in apoptosis. Toxicol Lett 82–83:149–153

    Article  PubMed  Google Scholar 

  80. Rapino F, Naumann I, Fulda S (2013) Bortezomib antagonizes microtubule-interfering drug-induced apoptosis by inhibiting G2/M transition and MCL-1 degradation. Cell Death Dis 4:e925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Kehrer JP, Biswal SS (2000) The molecular effects of acrolein. Toxicol Sci 57(1):6–15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research described in this chapter of the book was funded in part by Philip Morris International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Walker, P., Smith, T., Frost, K., Kelly, S., Suarez, I.G. (2015). High-Content Screening: Understanding and Managing Mechanistic Data to Better Predict Toxicity. In: Hoeng, J., Peitsch, M. (eds) Computational Systems Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2778-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2778-4_13

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2777-7

  • Online ISBN: 978-1-4939-2778-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics