Advertisement

Modeling Hedgehog Signaling Through Flux-Saturated Mechanisms

  • Óscar Sánchez
  • Juan Calvo
  • Carmen Ibáñez
  • Isabel GuerreroEmail author
  • Juan SolerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1322)

Abstract

Hedgehog (Hh) molecules act as morphogens directing cell fate during development by activating various target genes in a concentration dependent manner. Hitherto, modeling morphogen gradient formation in multicellular systems has employed linear diffusion, which is very far from physical reality and needs to be replaced by a deeper understanding of nonlinearities. We have developed a novel mathematical approach by applying flux-limited spreading (FLS) to Hh morphogenetic actions. In the new model, the characteristic velocity of propagation of each morphogen is a new key biological parameter. Unlike in linear diffusion models, FLS modeling predicts concentration fronts and correct patterns and cellular responses over time. In addition, FLS considers not only extracellular binding partners influence, but also channels or bridges of information transfer, such as specialized filopodia or cytonemes as a mechanism of Hh transport. We detect and measure morphogen particle velocity in cytonemes in the Drosophila wing imaginal disc. Indeed, this novel approach to morphogen gradient formation can contribute to future research in the field.

Key words

Hedgehog gradient Mathematical modeling Cytonemes and vesicles in Hh Flux-saturated mechanism Dispersion 

Notes

Acknowledgements

The paper has been partially supported by Junta de Andalucía Project FQM 954. IG was supported by Fundamental Biology (BFU2011-25987) and Consolider (CDS 2007-00008) program grants from the Spanish Ministry of Economy and Commutativity (MINECO), by Marie Curie FP7- Integration Network (ITN 238186) grant and by an institutional grant to Centro de Biología Molecular “Severo Ochoa” from the Fundación Areces. J.C., O.S., and J.S. were supported in part by Spanish MINECO, project MTM2011-23384 and FEDER funds. JC is also partially supported by La Caixa “Collaborative Mathematical Research’’ programme and a Juan de la Cierva grant of the spanish MEC.

References

  1. 1.
    Ingham PW, Nakano Y, Seger C (2011) Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet 12:393–406PubMedCrossRefGoogle Scholar
  2. 2.
    Turing AM (1952) The chemical basis of morphogenesis. Phil Trans Roy Soc Lond Ser B Biol Sci 237:37–72CrossRefGoogle Scholar
  3. 3.
    Crick F (1970) Diffusion in embryogenesis. Nature 40:561–563CrossRefGoogle Scholar
  4. 4.
    Meinhardt H (1978) Space–dependent cell determination under the control of a morphogen gradient. J Theor Biol 74:307–321PubMedCrossRefGoogle Scholar
  5. 5.
    Lander AD, Nie Q, Wan FY-M (2002) Do morphogen gradients arise by diffusion? Dev Cell 2:785–796PubMedCrossRefGoogle Scholar
  6. 6.
    Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329:1616–1620PubMedCrossRefGoogle Scholar
  7. 7.
    Dessaud E, Yang LL, Hill K, Cox B, Ulloa F, Ribeiro A et al (2007) Interpretation of the Sonic Hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450:717–720PubMedCrossRefGoogle Scholar
  8. 8.
    Stecca B, Ruiz i Altaba A (2010) Context-dependent regulation of the GLI code in cancer by Hedgehog and non-Hedgehog signals. J Mol Cell Biol 2(2):84–95PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29PubMedCrossRefGoogle Scholar
  10. 10.
    Guerrero I, Chiang C (2007) A conserved mechanism of Hedgehog gradient formation by lipid modifications. Trends Cell Biol 17:1–5PubMedCrossRefGoogle Scholar
  11. 11.
    Vyas N, Goswami D, Manonmani A, Sharma P, Ranganath H, VijayRaghavan K, Shashidhara L et al (2008) Nanoscale organization of Hedgehog is essential for long-range signalling. Cell 133:1214–1227PubMedCrossRefGoogle Scholar
  12. 12.
    Zeng X, Goetz JA, Suber LM, Scott WJ Jr, Schreiner CM, Robbins DJ (2011) A freely diffusible form of Sonic Hedgehog mediates long-range signalling. Nature 411:716–720CrossRefGoogle Scholar
  13. 13.
    Greco V, Hannus M, Eaton S (2001) Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106:633–645PubMedCrossRefGoogle Scholar
  14. 14.
    Panákova D, Sprong H, Marois E, Thiele C, Eaton S (2005) Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435:58–65PubMedCrossRefGoogle Scholar
  15. 15.
    Callejo A, Culi J, Guerrero I (2008) Patched, the receptor of Hedgehog, is a lipoprotein receptor. Proc Natl Acad Sci U S A 105:912–917PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Gurdon JB, Mitchell A, Mahony D (1995) Direct and continuous assessment by cells of their position in a morphogen gradient. Nature 376:520–521PubMedCrossRefGoogle Scholar
  17. 17.
    Saha K, Schaffer DV (2006) Signaling dynamics in Sonic hedgehog tissue patterning. Development 133:889–900PubMedCrossRefGoogle Scholar
  18. 18.
    Kornberg TB (2012) The imperatives of context and contour for morphogen dispersion. Biophys J 103:2252–2256PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Ramirez-Weber FA, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97:599–607PubMedCrossRefGoogle Scholar
  20. 20.
    Bilioni A, Sánchez-Hernández D, Callejo A, Gradilla AC, Ibáñez C, Mollica E et al (2013) Balancing Hedgehog, a retention and release equilibrium given by Dally, Ihog, Boi and shifted/DmWif. Dev Biol 376:198–212PubMedCrossRefGoogle Scholar
  21. 21.
    Callejo A, Bilioni A, Mollica E, Gorfinkiel N, Andrés G, Ibáñez C et al (2011) Dispatched mediates Hedgehog basolateral release to form the long-range morphogenetic gradient in the Drosophila wing disk epithelium. Proc Natl Acad Sci U S A 108:12591–12598PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Gradilla A-C, González E, Seijo I, Andrés G, González-Méndez L, Sánchez V et al (2014) Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun 5:5649PubMedCrossRefGoogle Scholar
  23. 23.
    Roy S, Hsiung F, Kornberg TB (2011) Specificity of Drosophila cytonemes for distinct signalling pathways. Science 15:354–358CrossRefGoogle Scholar
  24. 24.
    Sanders TA, Llagostera E, Barna M (2013) Specialized filopodia direct long-range transport of Shh during vertebrate tissue patterning. Nature 497:628–632PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Bischoff M, Gradilla AC, Seijo I, Andrés G, Rodríguez-Navas C, González-Méndez L, Guerrero I (2013) Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nat Cell Biol 15:1269–1283PubMedCrossRefGoogle Scholar
  26. 26.
    Verbeni M, Sánchez O, Mollica E, Siegl-Cachedernier I, Carleton A, Guerrero I et al (2013) Morphogenetic action through flux-limited spreading. Phys Life Rev 10:457–475PubMedCrossRefGoogle Scholar
  27. 27.
    Zheng X, Mann RK, Sever N, Beachy PA (2010) Genetic and biochemical definition of the Hedgehog receptor. Genes Dev 24:57–71PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Izzi L, Lévesque M, Morin S, Laniel D, Wilkes BC, Mille F et al (2011) Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation. Dev Cell 20:788–801PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Yan D, Wu Y, Yang Y, Belenkaya TY, Tang X, Lin X et al (2010) The cell-surface proteins Dally-like and Ihog differentially regulate Hedgehog signaling strength and range during development. Development 137:2033–2044PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Cardozo MJ, Sánchez-Arrones L, Sandonis A, Sánchez-Camacho C, Gestri G, Wilson SW, Guerrero IP (2014) Bovolenta, Cdon acts as a Hedgehog decoy receptor during proximal-distal patterning of the optic vesicle. Nat Commun 5:4272PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Brand AH, Perrimon N (1991) Generating lineage-specific markers to study Drosophila development. Dev Genet 12:238–252PubMedCrossRefGoogle Scholar
  32. 32.
    Torroja C, Gornkiel N, Guerrero I (2004) Patched controls the Hedgehog gradient by endocytosis in a dynamic-dependent manner, but this internalization does not play a major role in signal transduction. Development 131:2395–2408PubMedCrossRefGoogle Scholar
  33. 33.
    Tanimoto H, Itoh S, ten Dijke P, Tabata T (2000) Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol Cell 5:59–71PubMedCrossRefGoogle Scholar
  34. 34.
    Ashburner M, Roote J (2007) Maintenance of a Drosophila laboratory: general procedures. CSH Protoc 2007: pdb.ip35Google Scholar
  35. 35.
    Rojas-Rios P, Guerrero I, Gonzalez-Reyes A (2012) Cytoneme-mediated delivery of hedgehog regulates the expression of bone morphogenetic proteins to maintain germline stem cells in Drosophila. PLoS Biol 10:e1001298PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Bellomo N, Bellouquid A, Nieto J, Soler J (2010) Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems. Math Models Methods Appl Sci 20:1179–1207CrossRefGoogle Scholar
  37. 37.
    Campos J, Guerrero P, Sánchez O, Soler J (2013) On the analysis of travelling waves to a nonlinear flux limited reaction-diffusion equation. Ann Inst H Poincaré Anal Non Linéaire 30:141–155CrossRefGoogle Scholar
  38. 38.
    Calvo J, Campos J, Caselles V, Sánchez O, Soler J. Pattern formation in a flux limited reaction-diffusion equation of porous media type. http://arxiv.org/abs/1309.6789
  39. 39.
    Rosenau P (1992) Tempered diffusion: a transport process with propagating front and inertial delay. Phys Rev A 46:7371–7374CrossRefGoogle Scholar
  40. 40.
    Brenier Y (2003) Extended Monge-Kantorovich theory. In: Caffarelli LA, Salsa S (Eds) Optimal transportation and applications, Lectures given at the C.I.M.E. Summer School help in Martina Franca, Lecture Notes in Math. 1813, Springer-Verlag. pp 91–122Google Scholar
  41. 41.
    Calvo J, Mazón JM, Soler J, Verbeni M (2011) Qualitative properties of the solutions of a nonlinear flux–limited equation arising in the transport of morphogens. Math Models Methods Appl Sci 21:893–937CrossRefGoogle Scholar
  42. 42.
    Guerrero I, Kornberg TB (2014) Hedgehog and its circuitous journey from producing to target cells. Semin Cell Dev Biol 33C:52–62CrossRefGoogle Scholar
  43. 43.
    Bellomo N, Soler J (2012) On the mathematical theory of the dynamics of swarms viewed as a complex system. Math Models Methods Appl Sci 22, Paper No. 1140006Google Scholar
  44. 44.
    Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I et al (2008) Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc Natl Acad Sci U S A 105(4):1232–1237PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Couzin ID (2007) Collective minds. Nature 445:715PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Departamento de Matemática AplicadaUniversidad de GranadaGranadaSpain
  2. 2.Centre de Recerca MatemàticaEdifici C, Campus de BellateraBellaterra (Barcelona)Spain
  3. 3.Centro de Biología Molecular (CSIC-UAM)Universidad Autónoma de MadridMadridSpain

Personalised recommendations