Isothermal Titration Calorimetry: Assisted Crystallization of RNA–Ligand Complexes

  • Cyrielle Da Veiga
  • Joelle Mezher
  • Philippe Dumas
  • Eric EnnifarEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1320)


The success rate of nucleic acids/ligands co-crystallization can be significantly improved by performing preliminary biophysical analyses. Among suitable biophysical approaches, isothermal titration calorimetry (ITC) is certainly a method of choice. ITC can be used in a wide range of experimental conditions to monitor in real time the formation of the RNA– or DNA–ligand complex, with the advantage of providing in addition the complete binding profile of the interaction. Following the ITC experiment, the complex is ready to be concentrated for crystallization trials. This chapter describes a detailed experimental protocol for using ITC as a tool for monitoring RNA/small molecule binding, followed by co-crystallization.

Key words

Microcalorimetry Crystallization RNA–ligand complex ITC Thermodynamics 



This work was supported by grants from the Agence Nationale pour la Recherche (grant ANR-12-BS07-0007-03 “ClickEnARN”) and the Agence Nationale de Recherches sur le SIDA (ANRS). The authors would like to thank Vincent Olieric (Paul Scherrer Institute/Swiss Light Source, Villigen, Switzerland), Natalia Markova and Peter Gimeson (Microcal-Malvern, Uppsala, Sweden).


  1. 1.
    Feig AL (2007) Applications of isothermal titration calorimetry in RNA biochemistry and biophysics. Biopolymers 87:293–301PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Feig AL (2009) Studying RNA-RNA and RNA-protein interactions by isothermal titration calorimetry. Methods Enzymol 468:409–422PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Gilbert SD, Batey RT (2009) Monitoring RNA-ligand interactions using isothermal titration calorimetry. Methods Mol Biol 540:97–114PubMedCrossRefGoogle Scholar
  4. 4.
    Salim NN, Feig AL (2009) Isothermal titration calorimetry of RNA. Methods 47:198–205PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Pilch DS, Kaul M, Barbieri CM, Kerrigan JE (2003) Thermodynamics of aminoglycoside-rRNA recognition. Biopolymers 70:58–79PubMedCrossRefGoogle Scholar
  6. 6.
    Kulshina N, Edwards TE, Ferre-D'Amare AR (2010) Thermodynamic analysis of ligand binding and ligand binding-induced tertiary structure formation by the thiamine pyrophosphate riboswitch. RNA 16:186–196PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Pikovskaya O, Polonskaia A, Patel DJ, Serganov A (2011) Structural principles of nucleoside selectivity in a 2′-deoxyguanosine riboswitch. Nat Chem Biol 7:748–755PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Sokoloski JE, Dombrowski SE, Bevilacqua PC (2012) Thermodynamics of ligand binding to a heterogeneous RNA population in the malachite green aptamer. Biochemistry 51:565–572PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Ennifar E, Aslam MW, Strasser P, Hoffmann G, Dumas P, van Delft FL (2013) Structure-guided discovery of a novel aminoglycoside conjugate targeting HIV-1 RNA viral genome. ACS Chem Biol 8:2509–2517PubMedCrossRefGoogle Scholar
  10. 10.
    Trausch JJ, Batey RT (2013) A disconnect between high-affinity binding and efficient regulation by antifolates and purines in the tetrahydrofolate riboswitch. Chem Biol 1(2):205–216Google Scholar
  11. 11.
    Datta K, LiCata VJ (2003) Thermodynamics of the binding of Thermus aquaticus DNA polymerase to primed-template DNA. Nucleic Acids Res 31:5590–5597PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Recht MI, Williamson JR (2004) RNA tertiary structure and cooperative assembly of a large ribonucleoprotein complex. J Mol Biol 344:395–407PubMedCrossRefGoogle Scholar
  13. 13.
    Bauer WJ, Heath J, Jenkins JL, Kielkopf CL (2012) Three RNA recognition motifs participate in RNA recognition and structural organization by the pro-apoptotic factor TIA-1. J Mol Biol 415:727–740PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Freisz S, Mezher J, Hafirassou L, Wolff P, Nomine Y, Romier C, Dumas P, Ennifar E (2012) Sequence and structure requirements for specific recognition of HIV-1 TAR and DIS RNA by the HIV-1 Vif protein. RNA Biol 9:966–977PubMedCrossRefGoogle Scholar
  15. 15.
    Bec G, Meyer B, Gerard MA, Steger J, Fauster K, Wolff P, Burnouf D, Micura R, Dumas P, Ennifar E (2013) Thermodynamics of HIV-1 reverse transcriptase in action elucidates the mechanism of action of non-nucleoside inhibitors. J Am Chem Soc 135:9743–9752PubMedCrossRefGoogle Scholar
  16. 16.
    Lukavsky PJ, Daujotyte D, Tollervey JR, Ule J, Stuani C, Buratti E, Baralle FE, Damberger FF, Allain FH (2013) Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nat Struct Mol Biol 20:1443–1449PubMedCrossRefGoogle Scholar
  17. 17.
    Neuenfeldt A, Lorber B, Ennifar E, Gaudry A, Sauter C, Sissler M, Florentz C (2013) Thermodynamic properties distinguish human mitochondrial aspartyl-tRNA synthetase from bacterial homolog with same 3D architecture. Nucleic Acids Res 41:2698–2708PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Vander Meulen KA, Davis JH, Foster TR, Record MT Jr, Butcher SE (2008) Thermodynamics and folding pathway of tetraloop receptor-mediated RNA helical packing. J Mol Biol 384:702–717PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Reymond C, Bisaillon M, Perreault JP (2009) Monitoring of an RNA multistep folding pathway by isothermal titration calorimetry. Biophys J 96:132–140PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Salim N, Lamichhane R, Zhao R, Banerjee T, Philip J, Rueda D, Feig AL (2012) Thermodynamic and kinetic analysis of an RNA kissing interaction and its resolution into an extended duplex. Biophys J 102:1097–1107PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Zhang J, Ferre-D'Amare AR (2013) Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA. Nature 500:363–366PubMedCrossRefGoogle Scholar
  22. 22.
    Ladbury JE, Chowdhry BZ (1996) Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem Biol 3:791–801PubMedCrossRefGoogle Scholar
  23. 23.
    Leavitt S, Freire E (2001) Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr Opin Struct Biol 11:560–566PubMedCrossRefGoogle Scholar
  24. 24.
    Velazquez Campoy A, Freire E (2005) ITC in the post-genomic era…? Priceless. Biophys Chem 115:115–124PubMedCrossRefGoogle Scholar
  25. 25.
    Privalov PL, Dragan AI (2007) Microcalorimetry of biological macromolecules. Biophys Chem 126:16–24PubMedCrossRefGoogle Scholar
  26. 26.
    Ennifar E, Paillart JC, Marquet R, Ehresmann B, Ehresmann C, Dumas P, Walter P (2003) HIV-1 RNA dimerization initiation site is structurally similar to the ribosomal A site and binds aminoglycoside antibiotics. J Biol Chem 278:2723–2730PubMedCrossRefGoogle Scholar
  27. 27.
    Ennifar E, Paillart JC, Bodlenner A, Walter P, Weibel JM, Aubertin AM, Pale P, Dumas P, Marquet R (2006) Targeting the dimerization initiation site of HIV-1 RNA with aminoglycosides: from crystal to cell. Nucleic Acids Res 34:2328–2339PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Bernacchi S, Freisz S, Maechling C, Spiess B, Marquet R, Dumas P, Ennifar E (2007) Aminoglycoside binding to the HIV-1 RNA dimerization initiation site: thermodynamics and effect on the kissing-loop to duplex conversion. Nucleic Acids Res 35:7128–7139PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Ennifar E, Paillart JC, Bernacchi S, Walter P, Pale P, Decout JL, Marquet R, Dumas P (2007) A structure-based approach for targeting the HIV-1 genomic RNA dimerization initiation site. Biochimie 89:1195–1203PubMedCrossRefGoogle Scholar
  30. 30.
    Keller S, Vargas C, Zhao H, Piszczek G, Brautigam CA, Schuck P (2012) High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal Chem 84:5066–5073PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Bernacchi S, Ennifar E, Toth K, Walter P, Langowski J, Dumas P (2005) Mechanism of hairpin-duplex conversion for the HIV-1 dimerization initiation site. J Biol Chem 280:40112–40121PubMedCrossRefGoogle Scholar
  32. 32.
    Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137PubMedCrossRefGoogle Scholar
  33. 33.
    Tellinghuisen J (2005) Optimizing experimental parameters in isothermal titration calorimetry. J Phys Chem B 109:20027–20035PubMedCrossRefGoogle Scholar
  34. 34.
    Tellinghuisen J (2008) Isothermal titration calorimetry at very low c. Anal Biochem 373:395–397PubMedCrossRefGoogle Scholar
  35. 35.
    Burnouf D, Ennifar E, Guedich S, Puffer B, Hoffmann G, Bec G, Disdier F, Baltzinger M, Dumas P (2012) kinITC: a new method for obtaining joint thermodynamic and kinetic data by isothermal titration calorimetry. J Am Chem Soc 134:559–565PubMedCrossRefGoogle Scholar
  36. 36.
    Spolar RS, Record MT Jr (1994) Coupling of local folding to site-specific binding of proteins to DNA. Science 263:777–784PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Cyrielle Da Veiga
    • 1
  • Joelle Mezher
    • 1
  • Philippe Dumas
    • 1
  • Eric Ennifar
    • 1
    Email author
  1. 1.Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et CellulaireUPR 9002 CNRS/Université de StrasbourgStrasbourgFrance

Personalised recommendations