Fab Chaperone-Assisted RNA Crystallography (Fab CARC)

  • Eileen Sherman
  • Jennifer Archer
  • Jing-Dong YeEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1320)


Recent discovery of structured RNAs such as ribozymes and riboswitches shows that there is still much to learn about the structure and function of RNAs. Knowledge learned can be employed in both biochemical research and clinical applications. X-ray crystallography gives unparalleled atomic-level structural detail from which functional inferences can be deduced. However, the difficulty in obtaining high-quality crystals and their phasing information make it a very challenging task. RNA crystallography is particularly arduous due to several factors such as RNA’s paucity of surface chemical diversity, lability, repetitive anionic backbone, and flexibility, all of which are counterproductive to crystal packing. Here we describe Fab chaperone assisted RNA crystallography (CARC), a systematic technique to increase RNA crystallography success by facilitating crystal packing as well as expediting phase determination through molecular replacement of conserved Fab domains. Major steps described in this chapter include selection of a synthetic Fab library displayed on M13 phage against a structured RNA crystallization target, ELISA for initial choice of binding Fabs, Fab expression followed by protein A affinity then cation exchange chromatography purification, final choice of Fab by binding specificity and affinity as determined by a dot blot assay, and lastly gel filtration purification of a large quantity of chosen Fabs for crystallization.

Key words

RNA crystallography Chaperone assisted crystallography Fab (antigen binding fragment) Phage display selection 


  1. 1.
    Sabin LR, Delas MJ, Hannon GJ (2013) Dogma derailed: the many influences of RNA on the genome. Mol Cell 49:783–794PubMedCrossRefGoogle Scholar
  2. 2.
    Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Serganov A, Patel DJ (2007) Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat Rev Genet 8:776–790PubMedCrossRefGoogle Scholar
  4. 4.
    Pavon-Eternod M, Gomes S, Geslain R, Dai Q, Rosner MR, Pan T (2009) tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res 37:7268–7280PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9:703–719PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K, Tomonaga S, Watanabe Y, Chung YJ, Banerjee R, Iwamoto K, Kato T, Okazawa M, Yamauchi K, Tanda K, Takao K, Miyakawa T, Bradley A, Takumi T (2009) Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 137:1235–1246PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Ziats MN, Rennert OM (2013) Aberrant expression of long noncoding RNAs in autistic brain. J Mol Neurosci 49:589–593PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Powell WT, Coulson RL, Crary FK, Wong SS, Ach RA, Tsang P, Alice Yamada N, Yasui DH, Lasalle JM (2013) A Prader-Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Hum Mol Genet 22:4318–4328PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Sibbritt T, Patel HR, Preiss T (2013) Mapping and significance of the mRNA methylome. Wiley Interdiscip Rev RNA 4:397–422PubMedCrossRefGoogle Scholar
  10. 10.
    Hulsmans M, Holvoet P (2013) MicroRNAs as early biomarkers in obesity and related metabolic and cardiovascular diseases. Curr Pharm Des 19:5704–5717PubMedCrossRefGoogle Scholar
  11. 11.
    Tan L, Yu JT, Hu N, Tan L (2013) Non-coding RNAs in Alzheimer’s disease. Mol Neurobiol 47:382–393PubMedCrossRefGoogle Scholar
  12. 12.
    Schonrock N, Gotz J (2012) Decoding the non-coding RNAs in Alzheimer’s disease. Cell Mol Life Sci 69:3543–3559PubMedCrossRefGoogle Scholar
  13. 13.
    Wei Y, Nazari-Jahantigh M, Neth P, Weber C, Schober A (2013) MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis? Arterioscler Thromb Vasc Biol 33:449–454PubMedCrossRefGoogle Scholar
  14. 14.
    Flowers E, Froelicher ES, Aouizerat BE (2013) MicroRNA regulation of lipid metabolism. Metabolism 62:12–20PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Ferre-D’Amare AR, Doudna JA (2000) Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA-binding protein U1A as a crystallization module. J Mol Biol 295:541–556PubMedCrossRefGoogle Scholar
  16. 16.
    Golden BL, Kundrot CE (2003) RNA crystallization. J Struct Biol 142:98–107PubMedCrossRefGoogle Scholar
  17. 17.
    Ke A, Doudna JA (2004) Crystallization of RNA and RNA-protein complexes. Methods 34:408–414PubMedCrossRefGoogle Scholar
  18. 18.
    Ye JD, Tereshko V, Frederiksen JK, Koide A, Fellouse FA, Sidhu SS, Koide S, Kossiakoff AA, Piccirilli JA (2008) Synthetic antibodies for specific recognition and crystallization of structured RNA. Proc Natl Acad Sci U S A 105:82–87PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Koldobskaya Y, Duguid EM, Shechner DM, Suslov NB, Ye J, Sidhu SS, Bartel DP, Koide S, Kossiakoff AA, Piccirilli JA (2011) A portable RNA sequence whose recognition by a synthetic antibody facilitates structural determination. Nat Struct Mol Biol 18:100–106PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Ravindran PP, Heroux A, Ye JD (2011) Improvement of the crystallizability and expression of an RNA crystallization chaperone. J Biochem 150:535–543PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Shechner DM, Grant RA, Bagby SC, Koldobskaya Y, Piccirilli JA, Bartel DP (2009) Crystal structure of the catalytic core of an RNA-polymerase ribozyme. Science 326:1271–1275PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Ferré-D’Amaré AR (2010) Use of the spliceosomal protein U1A to facilitate crystallization and structure determination of complex RNAs. Methods 52:159–167PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Ferre-D’Amare AR, Zhou K, Doudna JA (1998) Crystal structure of a hepatitis delta virus ribozyme. Nature 395:567–574PubMedCrossRefGoogle Scholar
  24. 24.
    Keel AY, Rambo RP, Batey RT, Kieft JS (2007) A general strategy to solve the phase problem in RNA crystallography. Structure 15:761–772PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Guo F, Gooding AR, Cech TR (2004) Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol Cell 16:351–362PubMedGoogle Scholar
  26. 26.
    Golden BL, Gooding AR, Podell ER, Cech TR (1998) A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science 282:259–264PubMedCrossRefGoogle Scholar
  27. 27.
    Adams PL, Stahley MR, Gill ML, Kosek AB, Wang J, Strobel SA (2004) Crystal structure of a group I intron splicing intermediate. RNA 10:1867–1887PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Ferre-D’Amare AR, Zhou K, Doudna JA (1998) A general module for RNA crystallization. J Mol Biol 279:621–631PubMedCrossRefGoogle Scholar
  29. 29.
    Lee CV, Liang WC, Dennis MS, Eigenbrot C, Sidhu SS, Fuh G (2004) High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. J Mol Biol 340:1073–1093PubMedCrossRefGoogle Scholar
  30. 30.
    Sidhu SS, Fellouse FA (2006) Synthetic therapeutic antibodies. Nat Chem Biol 2:682–688PubMedCrossRefGoogle Scholar
  31. 31.
    Fellouse FA, Esaki K, Birtalan S, Raptis D, Cancasci VJ, Koide A, Jhurani P, Vasser M, Wiesmann C, Kossiakoff AA, Koide S, Sidhu SS (2007) High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J Mol Biol 373:924–940PubMedCrossRefGoogle Scholar
  32. 32.
    Sherman EM, Holmes S, Ye JD (2014) Specific RNA-binding antibodies with a four-amino-acid code. J Mol Biol 426:2145–2157PubMedCrossRefGoogle Scholar
  33. 33.
    Kwon M, Strobel SA (2008) Chemical basis of glycine riboswitch cooperativity. RNA 14:25–34PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Sherman EM, Esquiaqui J, Elsayed G, Ye JD (2012) An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches. RNA 18:496–507PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Ryder SP, Strobel SA (1999) Nucleotide analog interference mapping. Methods 18:38–50PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Central FloridaOrlandoUSA

Personalised recommendations