Polyacrylamide Gel Electrophoresis for Purification of Large Amounts of RNA

Part of the Methods in Molecular Biology book series (MIMB, volume 1320)

Abstract

Polyacrylamide gel electrophoresis (PAGE) constitutes a powerful technique for the efficient purification of RNA molecules dedicated to applications that require high purity levels. PAGE allows for the fractionation of RNA obtained from cell extracts, chemical or enzymatic synthesis, or modification experiments. Native or denaturing conditions can be chosen for analytical or preparative-scale separations and the nucleotide resolution can be tuned by changing the percentage and reticulation of the gel material. In this protocol, we focus on the preparation of milligram-scale amounts of ~200 nucleotides (nt) RNA molecules that were used in subsequent crystallization experiments.

Key words

Gel electrophoresis RNA purification In vitro transcription RNA degradation 

References

  1. 1.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USAGoogle Scholar
  2. 2.
    Easton LE, Shibata Y, Lukavsky PJ (2010) Rapid, nondenaturing RNA purification using weak anion-exchange fast performance liquid chromatography. RNA 16:647–653PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Batey RT (2014) Advances in methods for native expression and purification of RNA for structural studies. Curr Opin Struct Biol 26:1–8PubMedCrossRefGoogle Scholar
  4. 4.
    Chadalavada DM, Bevilacqua PC (2009) Analyzing RNA and DNA folding using temperature gradient gel electrophoresis (TGGE) with application to in vitro selections. Methods Enzymol 468:389–408PubMedCrossRefGoogle Scholar
  5. 5.
    Henco K, Harders J, Wiese U, Riesner D (1994) Temperature gradient gel electrophoresis (TGGE) for the detection of polymorphic DNA and RNA. Methods Mol Biol 31:211–228PubMedGoogle Scholar
  6. 6.
    Milligan JF, Uhlenbeck OC (1990) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 180:51–62CrossRefGoogle Scholar
  7. 7.
    Beckert B, Masquida B (2011) Synthesis of RNA by in vitro transcription. Methods Mol Biol 703:29–41PubMedCrossRefGoogle Scholar
  8. 8.
    Meyer M, Nielsen H, Oliéric V, Roblin P, Johansen SD, Westhof E, Masquida B (2014) Speciation of a group I intron into a lariat capping ribozyme. Proc Natl Acad Sci U S A 111:7659–7664PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Meyer M, Masquida B (2014) cis-Acting 5′ hammerhead ribozyme optimization for in vitro transcription of highly structured RNAs. Methods Mol Biol 1086:21–40PubMedCrossRefGoogle Scholar
  10. 10.
    Treiber DK, Williamson JR (1999) Exposing the kinetic traps in RNA folding. Curr Opin Struct Biol 9:339–345PubMedCrossRefGoogle Scholar
  11. 11.
    Wu M, Tinoco I (1998) RNA folding causes secondary structure rearrangement. Proc Natl Acad Sci U S A 95:11555–11560PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Kladwang W, Hum J, Das R (2012) Ultraviolet shadowing of RNA can cause significant chemical damage in seconds. Sci Rep 2:517PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Département de Biologie Structurale et Intégrative, IGBMCUniversité de Strasbourg/CNRS/INSERMIllkirchFrance
  2. 2.Génomique Microbiologie et Génétique Moléculaire, Institut de Physiologie et de Chimie Biologique, UMR 7156 CNRSUniversité de StrasbourgStrasbourgFrance

Personalised recommendations