Skip to main content

Reconstitution of Functionally Active Thermus thermophilus 30S Ribosomal Subunit from Ribosomal 16S RNA and Ribosomal Proteins

  • Protocol

Part of the Methods in Molecular Biology book series (MIMB,volume 1320)

Abstract

In vitro reconstitution systems of ribosomal subunits from free ribosomal RNA and ribosomal proteins are helpful tool for studies on the structure, function and assembly of ribosome. Using this system mutant or modified ribosomal proteins or ribosomal RNA can be incorporated into ribosomal subunits for studying ribosome structure and function. Developing the protocol for reconstitution of 30S subunits from an extreme thermophilic bacterium Thermus thermophilus can be beneficial especially for structural studies, as proteins and nucleic acids from this organism are very stable and crystallize easier than those from mesophilic organisms.

Key words

  • Ribosome
  • 30S subunit
  • In vitro reconstitution
  • Thermus thermophilus
  • Ribosomal proteins
  • RNA
  • Polyamines

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-2763-0_19
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-2763-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Traub P, Nomura M (1968) Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc Natl Acad Sci U S A 59:777–784

    CrossRef  CAS  PubMed Central  PubMed  Google Scholar 

  2. Mizushima S, Nomura M (1970) Assembly mapping of 30S ribosomal proteins from E. coli. Nature 226:1214

    CrossRef  CAS  PubMed  Google Scholar 

  3. Held WA, Mizushima S, Nomura M (1973) Reconstitution of Escherichia coli 30S ribosomal subunits from purified molecular components. J Biol Chem 248:5720–5730

    CAS  PubMed  Google Scholar 

  4. Culver GM, Noller HF (1999) Efficient reconstitution of functional Escherichia coli 30S ribosomal subunits from a complete set of recombinant small subunit ribosomal proteins. RNA 5:832–843

    CrossRef  CAS  PubMed Central  PubMed  Google Scholar 

  5. Culver GM, Noller HF (2000) In vitro reconstitution of 30S ribosomal subunits using complete set of recombinant proteins. Methods Enzymol 318:446–460

    CrossRef  CAS  PubMed  Google Scholar 

  6. Krzyzosiak W, Denman R, Nurse K, Hellmann W, Boublik M, Gehrke CW, Agris PF, Ofengand J (1987) In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into a functional 30S ribosome. Biochemistry 26:2353–2364

    CrossRef  CAS  PubMed  Google Scholar 

  7. Cohlberg JA, Nomura M (1976) Reconstitution of Bacillus stearothermophilus 50S ribosomal subunits from purified molecular components. J Biol Chem 251:209–221

    CAS  PubMed  Google Scholar 

  8. Fahnestock SR (1979) Reconstitution of active 50S ribosomal subunits from Bacillus licheniformis and Bacillus subtilis. Methods Enzymol 59:437–443

    CrossRef  CAS  PubMed  Google Scholar 

  9. Sanchez ME, Urena D, Amils R, Londei P (1990) In vitro reassembly of active large ribosomal subunits of the halophilic archaebacterium Haloferax mediterranei. Biochemistry 29:9256–9261

    CrossRef  CAS  PubMed  Google Scholar 

  10. Londei P, Teixido J, Acca M, Cammarano P, Amils R (1986) Total reconstitution of active large ribosomal subunits of the thermoacidophilic archaebacterium Sulfolobus solfataricus. Nucleic Acids Res 14:2269–2285

    CrossRef  CAS  PubMed Central  PubMed  Google Scholar 

  11. Oshima T (1974) Comparative studies on biochemical properties of an extreme thermophile, Thermus thermophilus HB 8 (author’s transl). Seikagaku 46:887–907

    CAS  PubMed  Google Scholar 

  12. Trakhanov SD, Yusupov MM, Agalarov SC, Garber M, Ryazancev SN, Tischenko SV, Shirokov VA (1987) Crystallization of 70S ribosomes and 30S ribosomal subunits from Thermus thermophilus. FEBS Lett 220:319–322

    CrossRef  Google Scholar 

  13. Garber M, Agalarov C, Eliseikina I, Tischenko S, Shirokov V, Yusupov M, Reshetnikova L, Trakhanov S, Tukalo M, Yaremchuk A (1991) Purification and crystallization of components of the protein-synthesizing system from Thermus thermophilus. J Cryst Growth 110:228–236

    CrossRef  CAS  Google Scholar 

  14. Yusupova G, Yusupov M, Spirin A, Ebel JP, Moras D, Ehresmann C, Ehresmann B (1991) Formation and crystallization of Thermus thermophilus 70S ribosome/tRNA complexes. FEBS Lett 290:69–72

    CrossRef  CAS  PubMed  Google Scholar 

  15. Igarashi K, Kashiwagi K, Kishida K, Watanabe Y, Kogo A, Hirose S (1979) Defect in the split proteins of 30-S ribosomal subunits and under-methylation of 16-S ribosomal RNA in a polyamine-requiring mutant of Escherichia coli grown in the absence of polyamines. Eur J Biochem 93:345–353

    CrossRef  CAS  PubMed  Google Scholar 

  16. Kakegawa T, Hirose S, Kashiwagi K, Igarashi K (1986) Effect of polyamines on in vitro reconstitution of ribosomal subunits. Eur J Biochem 158:265–269

    CrossRef  CAS  PubMed  Google Scholar 

  17. Igarashi K, Kashiwagi K, Kishida K, Kakegawa T, Hirose S (1981) Decrease in the S1 protein of 30-S ribosomal subunits in polyamine-requiring mutants of Escherichia coli grown in the absence of polyamines. Eur J Biochem 114:127–131

    CrossRef  CAS  PubMed  Google Scholar 

  18. Khaitovich P, Tenson T, Kloss P, Mankin AS (1999) Reconstitution of functionally active Thermus aquaticus large ribosomal subunits with in vitro-transcribed rRNA. Biochemistry 38:1780–1788

    CrossRef  CAS  PubMed  Google Scholar 

  19. Oshima T (1975) Thermine: a new polyamine from an extreme thermophile. Biochem Biophys Res Commun 63:1093–1098

    CrossRef  CAS  PubMed  Google Scholar 

  20. Gogia ZV, Yusupov MM, Spirina TN (1986) Structure of Thermus thermophilus ribosomes method of isolation and purification of the ribosomes. Molekul Biol (USSR) 20:519–526

    Google Scholar 

Download references

Acknowledgements

We are grateful to A.S. Spirin for his support of early stages on the study of Thermus thermophilus ribosomes; V.A. Shirokov for stimulating discussions. This work was supported by Russian Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulnara Yusupova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Agalarov, S., Yusupov, M., Yusupova, G. (2016). Reconstitution of Functionally Active Thermus thermophilus 30S Ribosomal Subunit from Ribosomal 16S RNA and Ribosomal Proteins. In: Ennifar, E. (eds) Nucleic Acid Crystallography. Methods in Molecular Biology, vol 1320. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2763-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2763-0_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2762-3

  • Online ISBN: 978-1-4939-2763-0

  • eBook Packages: Springer Protocols