Practical Radiation Damage-Induced Phasing

Part of the Methods in Molecular Biology book series (MIMB, volume 1320)

Abstract

Although crystallographers typically seek to mitigate radiation damage in macromolecular crystals, in some cases, radiation damage to specific atoms can be used to determine phases de novo. This process is called radiation damage-induced phasing or “RIP.” Here, we provide a general overview of the method and a practical set of data collection and processing strategies for phasing macromolecular structures using RIP.

Key words

Radiation damage Phasing Heavy atoms Synchrotron RIP RIPAS 

References

  1. 1.
    Ravelli RB, McSweeney SM (2000) The “fingerprint” that X-rays can leave on structures. Structure 8:315–328PubMedCrossRefGoogle Scholar
  2. 2.
    Garman EF, Owen RL (2006) Cryocooling and radiation damage in macromolecular crystallography. Acta Cryst D 62:32–47CrossRefGoogle Scholar
  3. 3.
    Teng TY (1990) Mounting of crystals for macromolecular crystallography in a free-standing thin film. J Appl Crystallogr 23:387–391CrossRefGoogle Scholar
  4. 4.
    Hope H (1988) Cryocrystallography of biological macromolecules: a generally applicable method. Acta Cryst B 44:22–26CrossRefGoogle Scholar
  5. 5.
    Cosier J, Glazer AM (1986) A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J Appl Crystallogr 19:105–107CrossRefGoogle Scholar
  6. 6.
    Garman EF, Schneider TR (1997) Macromolecular cryocrystallography. J Appl Crystallogr 30:211–237CrossRefGoogle Scholar
  7. 7.
    Popov AN, Bourenkov GP (2003) Choice of data-collection parameters based on statistic modelling. Acta Cryst D 59:1145–1153CrossRefGoogle Scholar
  8. 8.
    Bourenkov GP, Popov AN (2006) A quantitative approach to data-collection strategies. Acta Cryst D 62:58–64CrossRefGoogle Scholar
  9. 9.
    Bourenkov GP, Popov AN (2010) Optimization of data collection taking radiation damage into account. Acta Cryst D 66:409–419CrossRefGoogle Scholar
  10. 10.
    Dauter Z (2010) Carrying out an optimal experiment. Acta Cryst D 66:389–392CrossRefGoogle Scholar
  11. 11.
    Murray J, Garman E (2002) Investigation of possible free-radical scavengers and metrics for radiation damage in protein cryocrystallography presented at the “Second International Workshop on Radiation Damage to Crystalline Biological Samples” held at Advanced Photon Source, Chicago, USA, in December 2001. J Synchrotron Radiat 9:347–354PubMedCrossRefGoogle Scholar
  12. 12.
    Holton JM (2006) XANES measurements of the rate of radiation damage to selenomethionine side chains. J Synchrotron Radiat 14:51–72PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Kauffmann B, Weiss MS, Lamzin VS, Schmidt A (2006) How to avoid premature decay of your macromolecular crystal: a quick soak for long life. Structure 14:1099–1105PubMedCrossRefGoogle Scholar
  14. 14.
    Southworth-Davies RJ, Garman EF (2006) Radioprotectant screening for cryocrystallography. J Synchrotron Radiat 14:73–83PubMedCrossRefGoogle Scholar
  15. 15.
    Barker AI, Southworth-Davies RJ, Paithankar KS, Carmichael I, Garman EF (2009) Room-temperature scavengers for macromolecular crystallography: increased lifetimes and modified dose dependence of the intensity decay. J Synchrotron Radiat 16:205–216PubMedCrossRefGoogle Scholar
  16. 16.
    Macedo S, Pechlaner M, Schmid W, Weik M, Sato K, Dennison C, Djinović-Carugo K (2009) Can soaked-in scavengers protect metalloprotein active sites from reduction during data collection? J Synchrotron Radiat 16:191–204PubMedCrossRefGoogle Scholar
  17. 17.
    Nowak E, Brzuszkiewicz A, Dauter M, Dauter Z, Rosenbaum G (2009) To scavenge or not to scavenge: that is the question. Acta Cryst D 65:1004–1006CrossRefGoogle Scholar
  18. 18.
    Kmetko J, Warkentin M, Englich U, Thorne RE (2011) Can radiation damage to protein crystals be reduced using small-molecule compounds? Acta Cryst D 67:881–893CrossRefGoogle Scholar
  19. 19.
    Allan EG, Kander MC, Carmichael I, Garman EF (2013) To scavenge or not to scavenge, that is STILL the question. J Synchrotron Radiat 20:23–36PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Owen RL, Yorke BA, Gowdy JA, Pearson AR (2011) Revealing low-dose radiation damage using single-crystal spectroscopy. J Synchrotron Radiat 18:367–373PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Southworth-Davies RJ, Medina MA, Carmichael I, Garman EF (2007) Observation of decreased radiation damage at higher dose rates in room temperature protein crystallography. Structure 15:1531–1541PubMedCrossRefGoogle Scholar
  22. 22.
    Shimizu N, Hirata K, Hasegawa K, Ueno G, Yamamoto M (2006) Dose dependence of radiation damage for protein crystals studied at various X-ray energies. J Synchrotron Radiat 14:4–10PubMedCrossRefGoogle Scholar
  23. 23.
    Weiss MS, Panjikar S, Mueller-Dieckmann C, Tucker PA (2005) On the influence of the incident photon energy on the radiation damage in crystalline biological samples. J Synchrotron Radiat 12:304–309PubMedCrossRefGoogle Scholar
  24. 24.
    Homer C, Cooper L, Gonzalez A (2011) Energy dependence of site-specific radiation damage in protein crystals. J Synchrotron Radiat 18:338–345PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Fourme R, Honkimäki V, Girard E, Medjoubi K, Dhaussy A-C, Kahn R (2012) Reduction of radiation damage and other benefits of short wavelengths for macromolecular crystallography data collection. J Appl Crystallogr 45:652–661CrossRefGoogle Scholar
  26. 26.
    Garman EF (2010) Radiation damage in macromolecular crystallography: what is it and why should we care? Acta Cryst D 66:339–351CrossRefGoogle Scholar
  27. 27.
    Burmeister WP (2000) Structural changes in a cryo-cooled protein crystal owing to radiation damage. Acta Cryst D 56:328–341CrossRefGoogle Scholar
  28. 28.
    Evans G, Polentarutti M, Djinovic-Carugo K, Bricogne G (2003) SAD phasing with triiodide, softer X-rays and some help from radiation damage. Acta Cryst D 59:1429–1434CrossRefGoogle Scholar
  29. 29.
    Ravelli RBG, Leiros H-KS, Pan B, Caffrey M, McSweeney S (2003) Specific radiation damage can be used to solve macromolecular crystal structures. Structure 11:217–224PubMedCrossRefGoogle Scholar
  30. 30.
    De Sanctis D, Nanao MH (2012) Segmenting data sets for RIP. Acta Cryst D 68:1152–1162CrossRefGoogle Scholar
  31. 31.
    Leiros H-K, McSweeney SM, Smalås AO (2001) Atomic resolution structures of trypsin provide insight into structural radiation damage. Acta Cryst D 57:488–497CrossRefGoogle Scholar
  32. 32.
    Nanao MH, Ravelli RBG (2006) Phasing macromolecular structures with UV-induced structural changes. Structure 14:791–800PubMedCrossRefGoogle Scholar
  33. 33.
    Schönfeld DL, Ravelli RBG, Mueller U, Skerra A (2008) The 1.8-Å crystal structure of α1-acid glycoprotein (Orosomucoid) solved by UV RIP reveals the broad drug-binding activity of this human plasma lipocalin. J Mol Biol 384:393–405PubMedCrossRefGoogle Scholar
  34. 34.
    De Sanctis D, Tucker PA, Panjikar S (2011) Additional phase information from UV damage of selenomethionine labelled proteins. J Synchrotron Radiat 18:374–380PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Panjikar S, Mayerhofer H, Tucker PA, Mueller-Dieckmann J, de Sanctis D (2011) Single isomorphous replacement phasing of selenomethionine-containing proteins using UV-induced radiation damage. Acta Cryst D 67:32–44CrossRefGoogle Scholar
  36. 36.
    Nanao MH, Sheldrick GM, Ravelli RBG (2005) Improving radiation-damage substructures for RIP. Acta Cryst D 61:1227–1237CrossRefGoogle Scholar
  37. 37.
    Ravelli RBG, Nanao MH, Lovering A, White S, McSweeney S (2005) Phasing in the presence of radiation damage. J Synchrotron Radiat 12:276–284PubMedCrossRefGoogle Scholar
  38. 38.
    Schiltz M, Dumas P, Ennifar E, Flensburg C, Paciorek W, Vonrhein C, Bricogne G (2004) Phasing in the presence of severe site-specific radiation damage through dose-dependent modelling of heavy atoms. Acta Cryst D 60:1024–1031CrossRefGoogle Scholar
  39. 39.
    Rudiño-Piñera E, Ravelli RBG, Sheldrick GM, Nanao MH, Korostelev VV, Werner JM, Schwarz-Linek U, Potts JR, Garman EF (2007) The solution and crystal structures of a module pair from the Staphylococcus aureus-binding site of human fibronectin – a tale with a twist. J Mol Biol 368:833–844PubMedCrossRefGoogle Scholar
  40. 40.
    Ravelli RBG, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M (2004) Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428:198–202PubMedCrossRefGoogle Scholar
  41. 41.
    Grininger M, Ravelli RBG, Heider U, Zeth K (2004) Expression, crystallization and crystallographic analysis of DegS, a stress sensor of the bacterial periplasm. Acta Cryst D 60:1429–1431CrossRefGoogle Scholar
  42. 42.
    Kabsch W (2010) XDS. Acta Cryst D 66:125–132CrossRefGoogle Scholar
  43. 43.
    Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Cryst D 66:479–485CrossRefGoogle Scholar
  44. 44.
    Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Cryst D 67:235–242CrossRefGoogle Scholar
  45. 45.
    De La Fortelle E, Bricogne G (1997) Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol 276:472–494CrossRefGoogle Scholar
  46. 46.
    Paithankar KS, Garman EF (2010) Know your dose: RADDOSE. Acta Cryst D 66:381–388CrossRefGoogle Scholar
  47. 47.
    Paithankar KS, Owen RL, Garman EF (2009) Absorbed dose calculations for macromolecular crystals: improvements to RADDOSE. J Synchrotron Radiat 16:152–162PubMedCrossRefGoogle Scholar
  48. 48.
    Zeldin OB, Gerstel M, Garman EF (2013) RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography. J Appl Crystallogr 46:1225–1230CrossRefGoogle Scholar
  49. 49.
    Owen RL, Holton JM, Schulze-Briese C, Garman EF (2009) Determination of X-ray flux using silicon pin diodes. J Synchrotron Radiat 16:143–151PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    McGeehan J, Ravelli RBG, Murray JW, Owen RL, Cipriani F, McSweeney S, Weik M, Garman EF (2009) Colouring cryo-cooled crystals: online microspectrophotometry. J Synchrotron Radiat 16:163–172PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    McCoy AJ, Read RJ (2010) Experimental phasing: best practice and pitfalls. Acta Cryst D 66:458–469CrossRefGoogle Scholar
  52. 52.
    Carpentier P, Royant A, Weik M, Bourgeois D (2010) Raman-assisted crystallography suggests a mechanism of X-ray-induced disulfide radical formation and reparation. Structure 18:1410–1419PubMedCrossRefGoogle Scholar
  53. 53.
    Thorn A, Sheldrick GM (2011) ANODE: anomalous and heavy-atom density calculation. J Appl Crystallogr 44:1285–1287PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Structural Biology GroupEuropean Synchrotron Radiation FacilityGrenobleFrance
  2. 2.European Molecular Biology LaboratoryGrenoble OutstationGrenoble, Cedex 9France
  3. 3.CNRS, Univ. Grenoble Alpes, CEA, DSV, INRA, iRTSVLaboratoire de Physiologie Cellulaire Végétale, UMR 5168GrenobleFrance

Personalised recommendations