Crystallographic Data and Model Quality

Part of the Methods in Molecular Biology book series (MIMB, volume 1320)

Abstract

This article gives a consistent classification of sources of random and systematic errors in crystallographic data, and their influence on the averaged dataset obtained from a diffraction experiment. It discusses the relation between precision and accuracy and the crystallographic indicators used to estimate them, as well as topics like completeness and high-resolution cutoff. These concepts are applied in the context of presenting good practices for data processing with a widely used package, XDS. Recommendations are given for how to minimize the impact of several typical problems, like ice rings and shaded areas. Then, procedures for optimizing the processing parameters are explained. Finally, a simple graphical expression of some basic relations between data error and model error is suggested.

Key words

X-ray crystallography Accuracy Precision Random errors Systematic errors Merged data Unmerged data Indicators 

Notes

Acknowledgement

The author wishes to thank P. Andrew Karplus and Bernhard Rupp for critically reading and commenting on the manuscript.

References

  1. 1.
    Borek D, Minor W, Otwinowski Z (2003) Measurement errors and their consequences in protein crystallography. Acta Crystallogr D 59:2031–2038PubMedCrossRefGoogle Scholar
  2. 2.
    Evans PR (2006) Scaling and assessment of data quality. Acta Crystallogr D 62:72–82PubMedCrossRefGoogle Scholar
  3. 3.
    Evans PR (2011) An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr D 67:282–292PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Kabsch W (2010) Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D 66:133–144PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Kabsch W (2010) XDS. Acta Crystallogr D 66:125–132PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Bourenkov GP, Popov AN (2010) Optimization of data collection taking radiation damage into account. Acta Crystallogr D 66:409–419PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Liu Z-J, Chen L, Wu D, Ding W, Zhang H, Zhou W, Fu Z-Q, Wang B-C (2011) A multi-dataset data-collection strategy produces better diffraction data. Acta Crystallogr A 67:544–549PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Ravelli RBG, McSweeney SM (2000) The ‘fingerprint’ that X-rays can leave on structures. Structure 8:315–328PubMedCrossRefGoogle Scholar
  9. 9.
    Burmeister WP (2000) Structural changes in a cryo-cooled protein crystal owing to radiation damage. Acta Crystallogr D 56:328–341PubMedCrossRefGoogle Scholar
  10. 10.
    Diederichs K, McSweeney S, Ravelli RBG (2003) Zero-dose extrapolation as part of macromolecular synchrotron data reduction. Acta Crystallogr D 59:903–909PubMedCrossRefGoogle Scholar
  11. 11.
    Diederichs K (2010) Quantifying instrument errors in macromolecular X-ray data sets. Acta Crystallogr D 66:733–740PubMedCrossRefGoogle Scholar
  12. 12.
    Diederichs K (2009) Simulation of X-ray frames from macromolecular crystals using a ray-tracing approach. Acta Crystallogr D 65:535–542PubMedCrossRefGoogle Scholar
  13. 13.
    Arndt UW, Crowther RA, Mallett JFW (1968) A computer-linked cathode-ray tube microdensitometer for x-ray crystallography. J Phys E Sci Instrum 1:510–516CrossRefGoogle Scholar
  14. 14.
    Wilson AJC (1950) Largest likely values for the reliability index. Acta Crystallogr 3:397–398CrossRefGoogle Scholar
  15. 15.
    Diederichs K, Karplus PA (1997) Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat Struct Biol 4:269–274PubMedCrossRefGoogle Scholar
  16. 16.
    Weiss MS (2001) Global indicators of X-ray data quality. J Appl Crystallogr 34:130–135CrossRefGoogle Scholar
  17. 17.
    Krojer T, von Delft F (2011) Assessment of radiation damage behaviour in a large collection of empirically optimized datasets highlights the importance of unmeasured complicating effects. J Synch Rad 18:387–397CrossRefGoogle Scholar
  18. 18.
    Schiltz M, Dumas P, Ennifar E, Flensburg C, Paciorek W, Vonrhein C, Bricogne G (2004) Phasing in the presence of severe site-specific radiation damage through dose-dependent modelling of heavy atoms. Acta Crystallogr D 60:1024–1031PubMedCrossRefGoogle Scholar
  19. 19.
    Karplus PA, Diederichs K (2012) Linking Crystallographic Model and Data Quality. Science 336:1030–1033PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    White TW, Barty A, Stellato F, Holton JM, Kirian RA, Zatsepin NA, Chapman HN (2013) Crystallographic data processing for free-electron laser sources. Acta Crystallogr D69:1231–1240Google Scholar
  21. 21.
    Murshudov GN (2011) Some properties of crystallographic reliability index – Rfactor: effects of twinning. Appl Comput Math 10:250–261Google Scholar
  22. 22.
    Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275:1–21PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Diederichs K, Karplus PA (2013) Better models by discarding data? Acta Crystallogr D 69:1215–1222PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D 69:1204–1214PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Faust A, Puehringer S, Darowski N, Panjikar S, Diederichs K, Mueller U, Weiss MS (2010) Update on the tutorial for learning and teaching macromolecular crystallography. J Appl Crystallogr 43:1230–1237CrossRefGoogle Scholar
  26. 26.
    Schneider TR, Sheldrick GM (2002) Substructure solution with SHELXD. Acta Crystallogr D 58:1772–1779PubMedCrossRefGoogle Scholar
  27. 27.
    Diederichs K (2006) Some aspects of quantitative analysis and correction of radiation damage. Acta Crystallogr D 62:96–101PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of BiologyUniversität KonstanzKonstanzGermany

Personalised recommendations