Skip to main content

Progress in Yeast Glycosylation Engineering

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1321))

Abstract

While yeast are lower eukaryotic organisms, they share many common features and biological processes with higher eukaryotes. As such, yeasts have been used as model organisms to facilitate our understanding of such features and processes. To this end, a large number of powerful genetic tools have been developed to investigate and manipulate these organisms. Going hand-in-hand with these genetic tools is the ability to efficiently scale up the fermentation of these organisms, thus making them attractive hosts for the production of recombinant proteins. A key feature of producing recombinant proteins in yeast is that these proteins can be readily secreted into the culture supernatant, simplifying any downstream processing. A consequence of this secretion is that the proteins typically pass through the secretory pathway, during which they may be exposed to various posttranslational modifications. The addition of glycans is one such modification. Unfortunately, while certain aspects of glycosylation are shared between lower and higher eukaryotes, significant differences exist. Over the last two decades much research has focused on engineering the glycosylation pathways of yeast to more closely resemble those of higher eukaryotes, particularly those of humans for the production of therapeutic proteins. In the current review we shall highlight some of the key achievements in yeast glyco-engineering which have led to humanization of both the N- and O-linked glycosylation pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28:917–924

    Article  CAS  PubMed  Google Scholar 

  2. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  CAS  PubMed  Google Scholar 

  3. Berlec A, Strukelj B (2013) Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol 40:257–274

    Article  CAS  PubMed  Google Scholar 

  4. Walsh G (2010) Post-translational modifications of protein biopharmaceuticals. Drug Discov Today 15:773–780

    Article  CAS  PubMed  Google Scholar 

  5. Fleer R (1992) Engineering yeast for high level expression. Curr Opin Biotechnol 3:486–496

    Article  CAS  PubMed  Google Scholar 

  6. Punt PJ, van Biezen N, Conesa A et al (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206

    Article  CAS  PubMed  Google Scholar 

  7. Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833:2430–2437

    Article  CAS  PubMed  Google Scholar 

  8. Lommel M, Strahl S (2009) Protein O-mannosylation: conserved from bacteria to humans. Glycobiology 19:816–828

    Article  CAS  PubMed  Google Scholar 

  9. Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30:1119–1139

    Article  CAS  PubMed  Google Scholar 

  10. Nevalainen H, Peterson R (2014) Making recombinant proteins in filamentous fungi—are we expecting too much? Front Microbiol 5:75

    PubMed Central  PubMed  Google Scholar 

  11. Ruddock LW, Molinari M (2006) N-glycan processing in ER quality control. J Cell Sci 119:4373–4380

    Article  CAS  PubMed  Google Scholar 

  12. Lehle L, Strahl S, Tanner W (2006) Protein glycosylation, conserved from yeast to man: a model organism helps elucidate congenital human diseases. Angew Chem Int Ed Engl 45:6802–6818

    Article  CAS  PubMed  Google Scholar 

  13. Tanner W, Lehle L (1987) Protein glycosylation in yeast. Biochim Biophys Acta 906:81–99

    Article  CAS  PubMed  Google Scholar 

  14. Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426:227–237

    Article  CAS  PubMed  Google Scholar 

  15. Trimble RB, Lubowski C, Hauer CR III et al (2004) Characterization of N- and O-linked glycosylation of recombinant human bile salt-stimulated lipase secreted by Pichia pastoris. Glycobiology 14:265–274

    Article  CAS  PubMed  Google Scholar 

  16. Gemmill TR, Trimble RB (1999) Schizosaccharomyces pombe produces novel Gal0-2Man1-3 O-linked oligosaccharides. Glycobiology 9:507–515

    Article  CAS  PubMed  Google Scholar 

  17. Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13:448–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wacker C, Berger CN, Girard P et al (2011) Glycosylation profiles of therapeutic antibody pharmaceuticals. Eur J Pharm Biopharm 79:503–507

    Article  CAS  PubMed  Google Scholar 

  19. Zha D (2013) Glycoengineered Pichia-based expression of monoclonal antibodies. Methods Mol Biol 988:31–43

    CAS  PubMed  Google Scholar 

  20. Sethuraman N, Stadheim TA (2006) Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol 17:341–346

    Article  CAS  PubMed  Google Scholar 

  21. Nakayama K, Nagasu T, Shimma Y et al (1992) OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J 11:2511–2519

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Arico C, Bonnet C, Javaud C (2013) N-glycosylation humanization for production of therapeutic recombinant glycoproteins in Saccharomyces cerevisiae. Methods Mol Biol 988:45–57

    CAS  PubMed  Google Scholar 

  23. Chen MT, Lin S, Shandil I et al (2012) Generation of diploid Pichia pastoris strains by mating and their application for recombinant protein production. Microb Cell Fact 11:91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Jacobs PP, Geysens S, Vervecken W et al (2009) Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 4:58–70

    Article  CAS  PubMed  Google Scholar 

  25. Kotz A, Wagener J, Engel J et al (2010) Approaching the secrets of N-glycosylation in Aspergillus fumigatus: characterization of the AfOch1 protein. PLoS One 5:e15729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Krainer FW, Gmeiner C, Neutsch L et al (2013) Knockout of an endogenous mannosyltransferase increases the homogeneity of glycoproteins produced in Pichia pastoris. Sci Rep 3:3279

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lambou K, Perkhofer S, Fontaine T et al (2010) Comparative functional analysis of the OCH1 mannosyltransferase families in Aspergillus fumigatus and Saccharomyces cerevisiae. Yeast 27:625–636

    Article  CAS  PubMed  Google Scholar 

  28. Liu B, Gong X, Chang S et al (2009) Disruption of the OCH1 and MNN1 genes decrease N-glycosylation on glycoprotein expressed in Kluyveromyces lactis. J Biotechnol 143:95–102

    Article  CAS  PubMed  Google Scholar 

  29. Shahana S, Mora-Montes HM, Castillo L et al (2013) Reporters for the analysis of N-glycosylation in Candida albicans. Fungal Genet Biol 56:107–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Choi BK, Bobrowicz P, Davidson RC et al (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A 100:5022–5027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Chiba Y, Suzuki M, Yoshida S et al (1998) Production of human compatible high mannose-type (Man(5)GlcNAc(2)) sugar chains in Saccharomyces cerevisiae. J Biol Chem 273:26298–26304

    Article  CAS  PubMed  Google Scholar 

  32. Gomathinayagam S, Mitchell T, Zartler ER et al (2011) Structural elucidation of an alpha 1,2 mannosidase resistant oligosaccharide produced in Pichia pastoris. Glycobiology 21: 1606–1615

    Article  CAS  PubMed  Google Scholar 

  33. Hopkins D, Gomathinayagam S, Rittenhour AM et al (2011) Elimination of beta-mannose glycan structures in Pichia pastoris. Glycobiology 21:1616–1626

    Article  CAS  PubMed  Google Scholar 

  34. Lussier M, Sdicu AM, Bussey H (1999) The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae. Biochim Biophys Acta 1426:323–334

    Article  CAS  PubMed  Google Scholar 

  35. Raschke WC, Kern KA, Antalis C et al (1973) Genetic control of yeast mannan structure. Isolation and characterization of mannan mutants. J Biol Chem 248:4660–4666

    CAS  PubMed  Google Scholar 

  36. Jigami Y, Odani T (1999) Mannosylphosphate transfer to yeast mannan. Biochim Biophys Acta 1426:335–345

    Article  CAS  PubMed  Google Scholar 

  37. Odani T, Shimma Y, Wang XH et al (1997) Mannosylphosphate transfer to cell wall mannan is regulated by the transcriptional level of the MNN4 gene in Saccharomyces cerevisiae. FEBS Lett 420:186–190

    Article  CAS  PubMed  Google Scholar 

  38. Luallen RJ, Lin J, Fu H et al (2008) An engineered Saccharomyces cerevisiae strain binds the broadly neutralizing human immunodeficiency virus type 1 antibody 2G12 and elicits mannose-specific gp120-binding antibodies. J Virol 82:6447–6457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Park JN, Song Y, Cheon SA et al (2011) Essential role of YlMPO1, a novel Yarrowia lipolytica homologue of Saccharomyces cerevisiae MNN4, in mannosylphosphorylation of N- and O-linked glycans. Appl Environ Microbiol 77:1187–1195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Odani T, Shimma Y, Tanaka A et al (1996) Cloning and analysis of the MNN4 gene required for phosphorylation of N-linked oligosaccharides in Saccharomyces cerevisiae. Glycobiology 6:805–810

    Article  CAS  PubMed  Google Scholar 

  41. Callewaert N, Laroy W, Cadirgi H et al (2001) Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1,2-alpha-D-mannosidase for N-glycan engineering in Pichia pastoris. FEBS Lett 503:173–178

    Article  CAS  PubMed  Google Scholar 

  42. Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18:387–392

    Article  CAS  PubMed  Google Scholar 

  43. Bobrowicz P, Davidson RC, Li H et al (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 14:757–766

    Article  CAS  PubMed  Google Scholar 

  44. Hamilton SR, Davidson RC, Sethuraman N et al (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443

    Article  CAS  PubMed  Google Scholar 

  45. Nett JH, Stadheim TA, Li H et al (2011) A combinatorial genetic library approach to target heterologous glycosylation enzymes to the endoplasmic reticulum or the Golgi apparatus of Pichia pastoris. Yeast 28:237–252

    Article  CAS  PubMed  Google Scholar 

  46. Vervecken W, Kaigorodov V, Callewaert N et al (2004) In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl Environ Microbiol 70:2639–2646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Wang H, Song HL, Wang Q et al (2013) Expression of glycoproteins bearing complex human-like glycans with galactose terminal in Hansenula polymorpha. World J Microbiol Biotechnol 29:447–458

    Article  CAS  PubMed  Google Scholar 

  48. De Pourcq K, Vervecken W, Dewerte I et al (2012) Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man(8)GlcNAc(2) and Man(5)GlcNAc(2). Microb Cell Fact 11:53. doi:10.1186/1475-2859-11-53

    Article  PubMed Central  PubMed  Google Scholar 

  49. Ben DS, Esterman N, Rubin E et al (2004) Biases and complex patterns in the residues flanking protein N-glycosylation sites. Glycobiology 14:95–101

    Google Scholar 

  50. Kaplan HA, Welply JK, Lennarz WJ (1987) Oligosaccharyl transferase: the central enzyme in the pathway of glycoprotein assembly. Biochim Biophys Acta 906:161–173

    Article  CAS  PubMed  Google Scholar 

  51. Mellquist JL, Kasturi L, Spitalnik SL et al (1998) The amino acid following an asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency. Biochemistry 37:6833–6837

    Article  CAS  PubMed  Google Scholar 

  52. Li H, Sethuraman N, Stadheim TA et al (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24:210–215

    Article  CAS  PubMed  Google Scholar 

  53. Choi BK, Actor JK, Rios S et al (2008) Recombinant human lactoferrin expressed in glycoengineered Pichia pastoris: effect of terminal N-acetylneuraminic acid on in vitro secondary humoral immune response. Glycoconj J 25:581–593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Ha S, Ou Y, Vlasak J et al (2011) Isolation and characterization of IgG1 with asymmetrical Fc glycosylation. Glycobiology 21:1087–1096

    Article  CAS  PubMed  Google Scholar 

  55. Choi BK, Warburton S, Lin H et al (2012) Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris. Appl Microbiol Biotechnol 95:671–682

    Article  CAS  PubMed  Google Scholar 

  56. Panin VM, Shao L, Lei L et al (2002) Notch ligands are substrates for protein O-fucosyltransferase-1 and Fringe. J Biol Chem 277:29945–29952

    Article  CAS  PubMed  Google Scholar 

  57. Shao L, Moloney DJ, Haltiwanger R (2003) Fringe modifies O-fucose on mouse Notch1 at epidermal growth factor-like repeats within the ligand-binding site and the Abruptex region. J Biol Chem 278:7775–7782

    Article  CAS  PubMed  Google Scholar 

  58. Wang Y, Lee GF, Kelley RF et al (1996) Identification of a GDP-L-fucose:polypeptide fucosyltransferase and enzymatic addition of O-linked fucose to EGF domains. Glycobiology 6:837–842

    Article  CAS  PubMed  Google Scholar 

  59. Wang Y, Spellman MW (1998) Purification and characterization of a GDP-fucose: polypeptide fucosyltransferase from Chinese hamster ovary cells. J Biol Chem 273:8112–8118

    Article  CAS  PubMed  Google Scholar 

  60. Macek B, Hofsteenge J, Peter-Katalinic J (2001) Direct determination of glycosylation sites in O-fucosylated glycopeptides using nano-electrospray quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15:771–777

    Article  CAS  PubMed  Google Scholar 

  61. Harris RJ, van Halbeek H, Glushka J et al (1993) Identification and structural analysis of the tetrasaccharide NeuAc alpha(2→6)Gal beta(1→4)GlcNAc beta(1→3)Fuc alpha 1→O-linked to serine 61 of human factor IX. Biochemistry 32:6539–6547

    Article  CAS  PubMed  Google Scholar 

  62. Moloney DJ, Shair LH, Lu FM et al (2000) Mammalian Notch1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules. J Biol Chem 275:9604–9611

    Article  CAS  PubMed  Google Scholar 

  63. Hanisch FG (2001) O-glycosylation of the mucin type. Biol Chem 382:143–149

    Article  CAS  PubMed  Google Scholar 

  64. Peter-Katalinic J (2005) Methods in enzymology: O-glycosylation of proteins. Methods Enzymol 405:139–171

    CAS  PubMed  Google Scholar 

  65. Manya H, Chiba A, Yoshida A et al (2004) Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc Natl Acad Sci U S A 101:500–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Chai W, Yuen CT, Kogelberg H et al (1999) High prevalence of 2-mono- and 2,6-di-substituted manol-terminating sequences among O-glycans released from brain glycopeptides by reductive alkaline hydrolysis. Eur J Biochem 263:879–888

    Article  CAS  PubMed  Google Scholar 

  67. Hanisch FG, Breloy I (2009) Protein-specific glycosylation: signal patches and cis-controlling peptidic elements. Biol Chem 390:619–626

    Article  CAS  PubMed  Google Scholar 

  68. Haselbeck A, Tanner W (1983) O-glycosylation in Saccharomyces cerevisiae is initiated at the endoplasmic reticulum. FEBS Lett 158:335–338

    Article  CAS  PubMed  Google Scholar 

  69. Orlean P (1990) Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation, and N glycosylation of protein in Saccharomyces cerevisiae. Mol Cell Biol 10:5796–5805

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Loibl M, Strahl S (2013) Protein O-mannosylation: what we have learned from baker’s yeast. Biochim Biophys Acta 1833:2438–2446

    Article  CAS  PubMed  Google Scholar 

  71. Govindappa N, Hanumanthappa M, Venkatarangaiah K et al (2013) PMT1 gene plays a major role in O-mannosylation of insulin precursor in Pichia pastoris. Protein Expr Purif 88:164–171

    Article  CAS  PubMed  Google Scholar 

  72. Nett JH, Cook WJ, Chen MT et al (2013) Characterization of the Pichia pastoris protein-O-mannosyltransferase gene family. PLoS One 8:e68325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Prill SK, Klinkert B, Timpel C et al (2005) PMT family of Candida albicans: five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance. Mol Microbiol 55:546–560

    Article  CAS  PubMed  Google Scholar 

  74. Wilson IB, Gavel Y, von Heijne G (1991) Amino acid distributions around O-linked glycosylation sites. Biochem J 275:529–534

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Gentzsch M, Tanner W (1996) The PMT gene family: protein O-glycosylation in Saccharomyces cerevisiae is vital. EMBO J 15:5752–5759

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Orchard MG, Neuss JC, Galley CM et al (2004) Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg Med Chem Lett 14:3975–3978

    Article  CAS  PubMed  Google Scholar 

  77. Cantero PD, Lengsfeld C, Prill SK et al (2007) Transcriptional and physiological adaptation to defective protein-O-mannosylation in Candida albicans. Mol Microbiol 64:1115–1128

    Article  CAS  PubMed  Google Scholar 

  78. Arroyo J, Hutzler J, Bermejo C et al (2011) Functional and genomic analyses of blocked protein O-mannosylation in baker’s yeast. Mol Microbiol 79:1529–1546

    Article  CAS  PubMed  Google Scholar 

  79. Hamilton SR, Cook WJ, Gomathinayagam S et al (2013) Production of sialylated O-linked glycans in Pichia pastoris. Glycobiology 23:1192–1203

    Article  CAS  PubMed  Google Scholar 

  80. Chen X, Liu YD, Flynn GC (2009) The effect of Fc glycan forms on human IgG2 antibody clearance in humans. Glycobiology 19:240–249

    Article  CAS  PubMed  Google Scholar 

  81. Flynn GC, Chen X, Liu YD et al (2010) Naturally occurring glycan forms of human immunoglobulins G1 and G2. Mol Immunol 47:2074–2082

    Article  CAS  PubMed  Google Scholar 

  82. Cukan MC, Hopkins D, Burnina I et al (2012) Binding of DC-SIGN to glycoproteins expressed in glycoengineered Pichia pastoris. J Immunol Methods 386:34–42

    Article  CAS  PubMed  Google Scholar 

  83. Martinez T, Pace D, Brady L et al (2007) Characterization of a novel modification on IgG2 light chain. Evidence for the presence of O-linked mannosylation. J Chromatogr A 1156:183–187

    Article  CAS  PubMed  Google Scholar 

  84. Ibatullin FM, Golubev AM, Firsov LM et al (1993) A model for cleavage of O-glycosidic bonds in glycoproteins. Glycoconj J 10:214–218

    Article  CAS  PubMed  Google Scholar 

  85. Bergwerff AA, Stark W, Fendrich G et al (1998) Identification of Man alpha1-3Man alpha1-2Man and Man-linked phosphate on O-mannosylated recombinant leech-derived tryptase inhibitor produced by Saccharomyces cerevisiae and determination of the solution conformation of the mannosylated polypeptide. Eur J Biochem 253:560–575

    Article  CAS  PubMed  Google Scholar 

  86. Bretthauer RK (2007) Characterization of O-linked saccharides on glycoproteins. Methods Mol Biol 389:107–118

    CAS  PubMed  Google Scholar 

  87. Gomathinayagam S, Hamilton SR (2014) In vitro enzymatic treatment to remove O-linked mannose from intact glycoproteins. Appl Microbiol Biotechnol 98:2545–2554

    Article  CAS  PubMed  Google Scholar 

  88. Gnanesh Kumar BS, Pohlentz G, Schulte M et al (2014) Jack bean alpha-mannosidase: amino acid sequencing and N-glycosylation analysis of a valuable glycomics tool. Glycobiology 24:252–261

    Article  CAS  PubMed  Google Scholar 

  89. Chigira Y, Oka T, Okajima T et al (2008) Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains. Glycobiology 18:303–314

    Article  CAS  PubMed  Google Scholar 

  90. Nakayama K, Maeda Y, Jigami Y (2003) Interaction of GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase with GDP-mannose-4,6-dehydratase stabilizes the enzyme activity for formation of GDP-fucose from GDP-mannose. Glycobiology 13:673–680

    Article  CAS  PubMed  Google Scholar 

  91. Amano K, Chiba Y, Kasahara Y et al (2008) Engineering of mucin-type human glycoproteins in yeast cells. Proc Natl Acad Sci U S A 105:3232–3237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Chou KC, Zhang CT, Kezdy FJ et al (1995) A vector projection method for predicting the specificity of GalNAc-transferase. Proteins 21:118–126

    Article  CAS  PubMed  Google Scholar 

  93. Cai YD, Yu H, Chou KC (1997) Artificial neural network method for predicting the specificity of GalNAc-transferase. J Protein Chem 16:689–700

    Article  CAS  PubMed  Google Scholar 

  94. Julenius K, Molgaard A, Gupta R et al (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15:153–164

    Article  CAS  PubMed  Google Scholar 

  95. Lu L, Niu B, Zhao J et al (2009) GalNAc-transferase specificity prediction based on feature selection method. Peptides 30:359–364

    Article  CAS  PubMed  Google Scholar 

  96. Gerken TA, Jamison O, Perrine CL et al (2011) Emerging paradigms for the initiation of mucin-type protein O-glycosylation by the polypeptide GalNAc transferase family of glycosyltransferases. J Biol Chem 286:14493–14507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hamilton, S.R., Zha, D. (2015). Progress in Yeast Glycosylation Engineering. In: Castilho, A. (eds) Glyco-Engineering. Methods in Molecular Biology, vol 1321. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2760-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2760-9_6

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2759-3

  • Online ISBN: 978-1-4939-2760-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics