Advertisement

Progress in Yeast Glycosylation Engineering

  • Stephen R. Hamilton
  • Dongxing Zha
Part of the Methods in Molecular Biology book series (MIMB, volume 1321)

Abstract

While yeast are lower eukaryotic organisms, they share many common features and biological processes with higher eukaryotes. As such, yeasts have been used as model organisms to facilitate our understanding of such features and processes. To this end, a large number of powerful genetic tools have been developed to investigate and manipulate these organisms. Going hand-in-hand with these genetic tools is the ability to efficiently scale up the fermentation of these organisms, thus making them attractive hosts for the production of recombinant proteins. A key feature of producing recombinant proteins in yeast is that these proteins can be readily secreted into the culture supernatant, simplifying any downstream processing. A consequence of this secretion is that the proteins typically pass through the secretory pathway, during which they may be exposed to various posttranslational modifications. The addition of glycans is one such modification. Unfortunately, while certain aspects of glycosylation are shared between lower and higher eukaryotes, significant differences exist. Over the last two decades much research has focused on engineering the glycosylation pathways of yeast to more closely resemble those of higher eukaryotes, particularly those of humans for the production of therapeutic proteins. In the current review we shall highlight some of the key achievements in yeast glyco-engineering which have led to humanization of both the N- and O-linked glycosylation pathways.

Key words

Glycosylation Glycoengineer Humanization N-linked O-linked Oligosaccharyltransferase 

References

  1. 1.
    Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28:917–924PubMedCrossRefGoogle Scholar
  2. 2.
    Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306PubMedCrossRefGoogle Scholar
  3. 3.
    Berlec A, Strukelj B (2013) Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol 40:257–274PubMedCrossRefGoogle Scholar
  4. 4.
    Walsh G (2010) Post-translational modifications of protein biopharmaceuticals. Drug Discov Today 15:773–780PubMedCrossRefGoogle Scholar
  5. 5.
    Fleer R (1992) Engineering yeast for high level expression. Curr Opin Biotechnol 3:486–496PubMedCrossRefGoogle Scholar
  6. 6.
    Punt PJ, van Biezen N, Conesa A et al (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206PubMedCrossRefGoogle Scholar
  7. 7.
    Aebi M (2013) N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833:2430–2437PubMedCrossRefGoogle Scholar
  8. 8.
    Lommel M, Strahl S (2009) Protein O-mannosylation: conserved from bacteria to humans. Glycobiology 19:816–828PubMedCrossRefGoogle Scholar
  9. 9.
    Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30:1119–1139PubMedCrossRefGoogle Scholar
  10. 10.
    Nevalainen H, Peterson R (2014) Making recombinant proteins in filamentous fungi—are we expecting too much? Front Microbiol 5:75PubMedCentralPubMedGoogle Scholar
  11. 11.
    Ruddock LW, Molinari M (2006) N-glycan processing in ER quality control. J Cell Sci 119:4373–4380PubMedCrossRefGoogle Scholar
  12. 12.
    Lehle L, Strahl S, Tanner W (2006) Protein glycosylation, conserved from yeast to man: a model organism helps elucidate congenital human diseases. Angew Chem Int Ed Engl 45:6802–6818PubMedCrossRefGoogle Scholar
  13. 13.
    Tanner W, Lehle L (1987) Protein glycosylation in yeast. Biochim Biophys Acta 906:81–99PubMedCrossRefGoogle Scholar
  14. 14.
    Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426:227–237PubMedCrossRefGoogle Scholar
  15. 15.
    Trimble RB, Lubowski C, Hauer CR III et al (2004) Characterization of N- and O-linked glycosylation of recombinant human bile salt-stimulated lipase secreted by Pichia pastoris. Glycobiology 14:265–274PubMedCrossRefGoogle Scholar
  16. 16.
    Gemmill TR, Trimble RB (1999) Schizosaccharomyces pombe produces novel Gal0-2Man1-3 O-linked oligosaccharides. Glycobiology 9:507–515PubMedCrossRefGoogle Scholar
  17. 17.
    Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13:448–462PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Wacker C, Berger CN, Girard P et al (2011) Glycosylation profiles of therapeutic antibody pharmaceuticals. Eur J Pharm Biopharm 79:503–507PubMedCrossRefGoogle Scholar
  19. 19.
    Zha D (2013) Glycoengineered Pichia-based expression of monoclonal antibodies. Methods Mol Biol 988:31–43PubMedGoogle Scholar
  20. 20.
    Sethuraman N, Stadheim TA (2006) Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol 17:341–346PubMedCrossRefGoogle Scholar
  21. 21.
    Nakayama K, Nagasu T, Shimma Y et al (1992) OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. EMBO J 11:2511–2519PubMedCentralPubMedGoogle Scholar
  22. 22.
    Arico C, Bonnet C, Javaud C (2013) N-glycosylation humanization for production of therapeutic recombinant glycoproteins in Saccharomyces cerevisiae. Methods Mol Biol 988:45–57PubMedGoogle Scholar
  23. 23.
    Chen MT, Lin S, Shandil I et al (2012) Generation of diploid Pichia pastoris strains by mating and their application for recombinant protein production. Microb Cell Fact 11:91PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Jacobs PP, Geysens S, Vervecken W et al (2009) Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 4:58–70PubMedCrossRefGoogle Scholar
  25. 25.
    Kotz A, Wagener J, Engel J et al (2010) Approaching the secrets of N-glycosylation in Aspergillus fumigatus: characterization of the AfOch1 protein. PLoS One 5:e15729PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Krainer FW, Gmeiner C, Neutsch L et al (2013) Knockout of an endogenous mannosyltransferase increases the homogeneity of glycoproteins produced in Pichia pastoris. Sci Rep 3:3279PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Lambou K, Perkhofer S, Fontaine T et al (2010) Comparative functional analysis of the OCH1 mannosyltransferase families in Aspergillus fumigatus and Saccharomyces cerevisiae. Yeast 27:625–636PubMedCrossRefGoogle Scholar
  28. 28.
    Liu B, Gong X, Chang S et al (2009) Disruption of the OCH1 and MNN1 genes decrease N-glycosylation on glycoprotein expressed in Kluyveromyces lactis. J Biotechnol 143:95–102PubMedCrossRefGoogle Scholar
  29. 29.
    Shahana S, Mora-Montes HM, Castillo L et al (2013) Reporters for the analysis of N-glycosylation in Candida albicans. Fungal Genet Biol 56:107–115PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Choi BK, Bobrowicz P, Davidson RC et al (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A 100:5022–5027PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Chiba Y, Suzuki M, Yoshida S et al (1998) Production of human compatible high mannose-type (Man(5)GlcNAc(2)) sugar chains in Saccharomyces cerevisiae. J Biol Chem 273:26298–26304PubMedCrossRefGoogle Scholar
  32. 32.
    Gomathinayagam S, Mitchell T, Zartler ER et al (2011) Structural elucidation of an alpha 1,2 mannosidase resistant oligosaccharide produced in Pichia pastoris. Glycobiology 21: 1606–1615PubMedCrossRefGoogle Scholar
  33. 33.
    Hopkins D, Gomathinayagam S, Rittenhour AM et al (2011) Elimination of beta-mannose glycan structures in Pichia pastoris. Glycobiology 21:1616–1626PubMedCrossRefGoogle Scholar
  34. 34.
    Lussier M, Sdicu AM, Bussey H (1999) The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae. Biochim Biophys Acta 1426:323–334PubMedCrossRefGoogle Scholar
  35. 35.
    Raschke WC, Kern KA, Antalis C et al (1973) Genetic control of yeast mannan structure. Isolation and characterization of mannan mutants. J Biol Chem 248:4660–4666PubMedGoogle Scholar
  36. 36.
    Jigami Y, Odani T (1999) Mannosylphosphate transfer to yeast mannan. Biochim Biophys Acta 1426:335–345PubMedCrossRefGoogle Scholar
  37. 37.
    Odani T, Shimma Y, Wang XH et al (1997) Mannosylphosphate transfer to cell wall mannan is regulated by the transcriptional level of the MNN4 gene in Saccharomyces cerevisiae. FEBS Lett 420:186–190PubMedCrossRefGoogle Scholar
  38. 38.
    Luallen RJ, Lin J, Fu H et al (2008) An engineered Saccharomyces cerevisiae strain binds the broadly neutralizing human immunodeficiency virus type 1 antibody 2G12 and elicits mannose-specific gp120-binding antibodies. J Virol 82:6447–6457PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Park JN, Song Y, Cheon SA et al (2011) Essential role of YlMPO1, a novel Yarrowia lipolytica homologue of Saccharomyces cerevisiae MNN4, in mannosylphosphorylation of N- and O-linked glycans. Appl Environ Microbiol 77:1187–1195PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Odani T, Shimma Y, Tanaka A et al (1996) Cloning and analysis of the MNN4 gene required for phosphorylation of N-linked oligosaccharides in Saccharomyces cerevisiae. Glycobiology 6:805–810PubMedCrossRefGoogle Scholar
  41. 41.
    Callewaert N, Laroy W, Cadirgi H et al (2001) Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1,2-alpha-D-mannosidase for N-glycan engineering in Pichia pastoris. FEBS Lett 503:173–178PubMedCrossRefGoogle Scholar
  42. 42.
    Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18:387–392PubMedCrossRefGoogle Scholar
  43. 43.
    Bobrowicz P, Davidson RC, Li H et al (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 14:757–766PubMedCrossRefGoogle Scholar
  44. 44.
    Hamilton SR, Davidson RC, Sethuraman N et al (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443PubMedCrossRefGoogle Scholar
  45. 45.
    Nett JH, Stadheim TA, Li H et al (2011) A combinatorial genetic library approach to target heterologous glycosylation enzymes to the endoplasmic reticulum or the Golgi apparatus of Pichia pastoris. Yeast 28:237–252PubMedCrossRefGoogle Scholar
  46. 46.
    Vervecken W, Kaigorodov V, Callewaert N et al (2004) In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl Environ Microbiol 70:2639–2646PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Wang H, Song HL, Wang Q et al (2013) Expression of glycoproteins bearing complex human-like glycans with galactose terminal in Hansenula polymorpha. World J Microbiol Biotechnol 29:447–458PubMedCrossRefGoogle Scholar
  48. 48.
    De Pourcq K, Vervecken W, Dewerte I et al (2012) Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man(8)GlcNAc(2) and Man(5)GlcNAc(2). Microb Cell Fact 11:53. doi: 10.1186/1475-2859-11-53 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Ben DS, Esterman N, Rubin E et al (2004) Biases and complex patterns in the residues flanking protein N-glycosylation sites. Glycobiology 14:95–101Google Scholar
  50. 50.
    Kaplan HA, Welply JK, Lennarz WJ (1987) Oligosaccharyl transferase: the central enzyme in the pathway of glycoprotein assembly. Biochim Biophys Acta 906:161–173PubMedCrossRefGoogle Scholar
  51. 51.
    Mellquist JL, Kasturi L, Spitalnik SL et al (1998) The amino acid following an asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency. Biochemistry 37:6833–6837PubMedCrossRefGoogle Scholar
  52. 52.
    Li H, Sethuraman N, Stadheim TA et al (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24:210–215PubMedCrossRefGoogle Scholar
  53. 53.
    Choi BK, Actor JK, Rios S et al (2008) Recombinant human lactoferrin expressed in glycoengineered Pichia pastoris: effect of terminal N-acetylneuraminic acid on in vitro secondary humoral immune response. Glycoconj J 25:581–593PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Ha S, Ou Y, Vlasak J et al (2011) Isolation and characterization of IgG1 with asymmetrical Fc glycosylation. Glycobiology 21:1087–1096PubMedCrossRefGoogle Scholar
  55. 55.
    Choi BK, Warburton S, Lin H et al (2012) Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris. Appl Microbiol Biotechnol 95:671–682PubMedCrossRefGoogle Scholar
  56. 56.
    Panin VM, Shao L, Lei L et al (2002) Notch ligands are substrates for protein O-fucosyltransferase-1 and Fringe. J Biol Chem 277:29945–29952PubMedCrossRefGoogle Scholar
  57. 57.
    Shao L, Moloney DJ, Haltiwanger R (2003) Fringe modifies O-fucose on mouse Notch1 at epidermal growth factor-like repeats within the ligand-binding site and the Abruptex region. J Biol Chem 278:7775–7782PubMedCrossRefGoogle Scholar
  58. 58.
    Wang Y, Lee GF, Kelley RF et al (1996) Identification of a GDP-L-fucose:polypeptide fucosyltransferase and enzymatic addition of O-linked fucose to EGF domains. Glycobiology 6:837–842PubMedCrossRefGoogle Scholar
  59. 59.
    Wang Y, Spellman MW (1998) Purification and characterization of a GDP-fucose: polypeptide fucosyltransferase from Chinese hamster ovary cells. J Biol Chem 273:8112–8118PubMedCrossRefGoogle Scholar
  60. 60.
    Macek B, Hofsteenge J, Peter-Katalinic J (2001) Direct determination of glycosylation sites in O-fucosylated glycopeptides using nano-electrospray quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15:771–777PubMedCrossRefGoogle Scholar
  61. 61.
    Harris RJ, van Halbeek H, Glushka J et al (1993) Identification and structural analysis of the tetrasaccharide NeuAc alpha(2→6)Gal beta(1→4)GlcNAc beta(1→3)Fuc alpha 1→O-linked to serine 61 of human factor IX. Biochemistry 32:6539–6547PubMedCrossRefGoogle Scholar
  62. 62.
    Moloney DJ, Shair LH, Lu FM et al (2000) Mammalian Notch1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules. J Biol Chem 275:9604–9611PubMedCrossRefGoogle Scholar
  63. 63.
    Hanisch FG (2001) O-glycosylation of the mucin type. Biol Chem 382:143–149PubMedCrossRefGoogle Scholar
  64. 64.
    Peter-Katalinic J (2005) Methods in enzymology: O-glycosylation of proteins. Methods Enzymol 405:139–171PubMedGoogle Scholar
  65. 65.
    Manya H, Chiba A, Yoshida A et al (2004) Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc Natl Acad Sci U S A 101:500–505PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Chai W, Yuen CT, Kogelberg H et al (1999) High prevalence of 2-mono- and 2,6-di-substituted manol-terminating sequences among O-glycans released from brain glycopeptides by reductive alkaline hydrolysis. Eur J Biochem 263:879–888PubMedCrossRefGoogle Scholar
  67. 67.
    Hanisch FG, Breloy I (2009) Protein-specific glycosylation: signal patches and cis-controlling peptidic elements. Biol Chem 390:619–626PubMedCrossRefGoogle Scholar
  68. 68.
    Haselbeck A, Tanner W (1983) O-glycosylation in Saccharomyces cerevisiae is initiated at the endoplasmic reticulum. FEBS Lett 158:335–338PubMedCrossRefGoogle Scholar
  69. 69.
    Orlean P (1990) Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation, and N glycosylation of protein in Saccharomyces cerevisiae. Mol Cell Biol 10:5796–5805PubMedCentralPubMedGoogle Scholar
  70. 70.
    Loibl M, Strahl S (2013) Protein O-mannosylation: what we have learned from baker’s yeast. Biochim Biophys Acta 1833:2438–2446PubMedCrossRefGoogle Scholar
  71. 71.
    Govindappa N, Hanumanthappa M, Venkatarangaiah K et al (2013) PMT1 gene plays a major role in O-mannosylation of insulin precursor in Pichia pastoris. Protein Expr Purif 88:164–171PubMedCrossRefGoogle Scholar
  72. 72.
    Nett JH, Cook WJ, Chen MT et al (2013) Characterization of the Pichia pastoris protein-O-mannosyltransferase gene family. PLoS One 8:e68325PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Prill SK, Klinkert B, Timpel C et al (2005) PMT family of Candida albicans: five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance. Mol Microbiol 55:546–560PubMedCrossRefGoogle Scholar
  74. 74.
    Wilson IB, Gavel Y, von Heijne G (1991) Amino acid distributions around O-linked glycosylation sites. Biochem J 275:529–534PubMedCentralPubMedGoogle Scholar
  75. 75.
    Gentzsch M, Tanner W (1996) The PMT gene family: protein O-glycosylation in Saccharomyces cerevisiae is vital. EMBO J 15:5752–5759PubMedCentralPubMedGoogle Scholar
  76. 76.
    Orchard MG, Neuss JC, Galley CM et al (2004) Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg Med Chem Lett 14:3975–3978PubMedCrossRefGoogle Scholar
  77. 77.
    Cantero PD, Lengsfeld C, Prill SK et al (2007) Transcriptional and physiological adaptation to defective protein-O-mannosylation in Candida albicans. Mol Microbiol 64:1115–1128PubMedCrossRefGoogle Scholar
  78. 78.
    Arroyo J, Hutzler J, Bermejo C et al (2011) Functional and genomic analyses of blocked protein O-mannosylation in baker’s yeast. Mol Microbiol 79:1529–1546PubMedCrossRefGoogle Scholar
  79. 79.
    Hamilton SR, Cook WJ, Gomathinayagam S et al (2013) Production of sialylated O-linked glycans in Pichia pastoris. Glycobiology 23:1192–1203PubMedCrossRefGoogle Scholar
  80. 80.
    Chen X, Liu YD, Flynn GC (2009) The effect of Fc glycan forms on human IgG2 antibody clearance in humans. Glycobiology 19:240–249PubMedCrossRefGoogle Scholar
  81. 81.
    Flynn GC, Chen X, Liu YD et al (2010) Naturally occurring glycan forms of human immunoglobulins G1 and G2. Mol Immunol 47:2074–2082PubMedCrossRefGoogle Scholar
  82. 82.
    Cukan MC, Hopkins D, Burnina I et al (2012) Binding of DC-SIGN to glycoproteins expressed in glycoengineered Pichia pastoris. J Immunol Methods 386:34–42PubMedCrossRefGoogle Scholar
  83. 83.
    Martinez T, Pace D, Brady L et al (2007) Characterization of a novel modification on IgG2 light chain. Evidence for the presence of O-linked mannosylation. J Chromatogr A 1156:183–187PubMedCrossRefGoogle Scholar
  84. 84.
    Ibatullin FM, Golubev AM, Firsov LM et al (1993) A model for cleavage of O-glycosidic bonds in glycoproteins. Glycoconj J 10:214–218PubMedCrossRefGoogle Scholar
  85. 85.
    Bergwerff AA, Stark W, Fendrich G et al (1998) Identification of Man alpha1-3Man alpha1-2Man and Man-linked phosphate on O-mannosylated recombinant leech-derived tryptase inhibitor produced by Saccharomyces cerevisiae and determination of the solution conformation of the mannosylated polypeptide. Eur J Biochem 253:560–575PubMedCrossRefGoogle Scholar
  86. 86.
    Bretthauer RK (2007) Characterization of O-linked saccharides on glycoproteins. Methods Mol Biol 389:107–118PubMedGoogle Scholar
  87. 87.
    Gomathinayagam S, Hamilton SR (2014) In vitro enzymatic treatment to remove O-linked mannose from intact glycoproteins. Appl Microbiol Biotechnol 98:2545–2554PubMedCrossRefGoogle Scholar
  88. 88.
    Gnanesh Kumar BS, Pohlentz G, Schulte M et al (2014) Jack bean alpha-mannosidase: amino acid sequencing and N-glycosylation analysis of a valuable glycomics tool. Glycobiology 24:252–261PubMedCrossRefGoogle Scholar
  89. 89.
    Chigira Y, Oka T, Okajima T et al (2008) Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains. Glycobiology 18:303–314PubMedCrossRefGoogle Scholar
  90. 90.
    Nakayama K, Maeda Y, Jigami Y (2003) Interaction of GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase with GDP-mannose-4,6-dehydratase stabilizes the enzyme activity for formation of GDP-fucose from GDP-mannose. Glycobiology 13:673–680PubMedCrossRefGoogle Scholar
  91. 91.
    Amano K, Chiba Y, Kasahara Y et al (2008) Engineering of mucin-type human glycoproteins in yeast cells. Proc Natl Acad Sci U S A 105:3232–3237PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Chou KC, Zhang CT, Kezdy FJ et al (1995) A vector projection method for predicting the specificity of GalNAc-transferase. Proteins 21:118–126PubMedCrossRefGoogle Scholar
  93. 93.
    Cai YD, Yu H, Chou KC (1997) Artificial neural network method for predicting the specificity of GalNAc-transferase. J Protein Chem 16:689–700PubMedCrossRefGoogle Scholar
  94. 94.
    Julenius K, Molgaard A, Gupta R et al (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15:153–164PubMedCrossRefGoogle Scholar
  95. 95.
    Lu L, Niu B, Zhao J et al (2009) GalNAc-transferase specificity prediction based on feature selection method. Peptides 30:359–364PubMedCrossRefGoogle Scholar
  96. 96.
    Gerken TA, Jamison O, Perrine CL et al (2011) Emerging paradigms for the initiation of mucin-type protein O-glycosylation by the polypeptide GalNAc transferase family of glycosyltransferases. J Biol Chem 286:14493–14507PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Stephen R. Hamilton
    • 1
  • Dongxing Zha
    • 2
  1. 1.GlycoFi (A Wholly Owned Subsidiary of Merck & Co., Inc.), Biologics DiscoveryMerck Research LaboratoriesLebanonUSA
  2. 2.Institute for Applied Cancer ScienceThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations