GlycoSNAP: A High-Throughput Screening Methodology for Engineering Designer Glycosylation Enzymes

  • Anne A. Ollis
  • Yi Chai
  • Matthew P. DeLisa
Part of the Methods in Molecular Biology book series (MIMB, volume 1321)


The Campylobacter jejuni protein glycosylation locus (pgl) encodes enzymes for asparagine-linked (N-linked) glycosylation and serves as the prototype for N-glycosylation in bacteria. This pathway has been functionally transferred into Escherichia coli, thereby enabling efficient N-linked glycosylation of acceptor proteins with the C. jejuni heptasaccharide in this genetically tractable host. However, expansion of this bacterial system to encompass the vast biological diversity of potential glycans and target proteins often requires engineering of the non-native enzymes to isolate variants with optimal or altered functions. Here, we describe a genetic assay named glycoSNAP (glycosylation of secreted N-linked acceptor proteins) that facilitates engineering of glycosylation enzymes directly in E. coli. To date, this method has been successfully applied to screen (1) combinatorial libraries of bacterial oligosaccharyltransferases (OSTs) for relaxed substrate specificity and (2) acceptor site libraries to identify sequons recognized by natural OSTs as well as engineered variants.

Key words

N-Linked protein glycosylation Escherichia coli Glycosyltransferase Oligosaccharyltransferase Protein engineering 


  1. 1.
    Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8PubMedCrossRefGoogle Scholar
  2. 2.
    Zielinska DF, Gnad F, Wisniewski JR et al (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–907PubMedCrossRefGoogle Scholar
  3. 3.
    Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369PubMedCrossRefGoogle Scholar
  4. 4.
    Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049PubMedCrossRefGoogle Scholar
  5. 5.
    Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130PubMedCrossRefGoogle Scholar
  6. 6.
    Mitra N, Sinha S, Ramya TN et al (2006) N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci 31:156–163PubMedCrossRefGoogle Scholar
  7. 7.
    Abu-Qarn M, Eichler J, Sharon N (2008) Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr Opin Struct Biol 18:544–550PubMedCrossRefGoogle Scholar
  8. 8.
    Calo D, Kaminski L, Eichler J (2010) Protein glycosylation in Archaea: sweet and extreme. Glycobiology 20:1065–1076PubMedCrossRefGoogle Scholar
  9. 9.
    Nothaft H, Szymanski CM (2010) Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8:765–778PubMedCrossRefGoogle Scholar
  10. 10.
    Szymanski CM, Yao R, Ewing CP et al (1999) Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol Microbiol 32:1022–1030PubMedCrossRefGoogle Scholar
  11. 11.
    Szymanski CM, Wren BW (2005) Protein glycosylation in bacterial mucosal pathogens. Nat Rev Microbiol 3:225–237PubMedCrossRefGoogle Scholar
  12. 12.
    Wacker M, Linton D, Hitchen PG et al (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298:1790–1793PubMedCrossRefGoogle Scholar
  13. 13.
    Young NM, Brisson JR, Kelly J et al (2002) Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J Biol Chem 277:42530–42539PubMedCrossRefGoogle Scholar
  14. 14.
    Szymanski CM, Logan SM, Linton D et al (2003) Campylobacter—a tale of two protein glycosylation systems. Trends Microbiol 11:233–238PubMedCrossRefGoogle Scholar
  15. 15.
    Linton D, Dorrell N, Hitchen PG et al (2005) Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Mol Microbiol 55:1695–1703PubMedCrossRefGoogle Scholar
  16. 16.
    Aebi M, Bernasconi R, Clerc S et al (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82PubMedCrossRefGoogle Scholar
  17. 17.
    Schwarz F, Aebi M (2011) Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 21:576–582PubMedCrossRefGoogle Scholar
  18. 18.
    Zufferey R, Knauer R, Burda P et al (1995) STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo. EMBO J 14:4949–4960PubMedCentralPubMedGoogle Scholar
  19. 19.
    Gavel Y, von Heijne G (1990) Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng 3:433–442PubMedCrossRefGoogle Scholar
  20. 20.
    Kowarik M, Young NM, Numao S et al (2006) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J 25:1957–1966PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Lizak C, Gerber S, Numao S et al (2011) X-ray structure of a bacterial oligosaccharyltransferase. Nature 474:350–355PubMedCrossRefGoogle Scholar
  22. 22.
    Valderrama-Rincon JD, Fisher AC, Merritt JH et al (2012) An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat Chem Biol 8:434–436PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Ollis AA, Zhang S, Fisher AC et al (2014) Engineered oligosaccharyltransferases with greatly relaxed acceptor site specificity. Nat Chem Biol 10(10):816–822PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang G, Brokx S, Weiner JH (2006) Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli. Nat Biotechnol 24:100–104PubMedCrossRefGoogle Scholar
  25. 25.
    Haitjema CH, Boock JT, Natarajan A et al (2013) Universal genetic assay for engineering extracellular protein expression. ACS Synth Biol 3:74–82PubMedCrossRefGoogle Scholar
  26. 26.
    Fisher AC, Haitjema CH, Guarino C et al (2011) Production of secretory and extracellular N-linked glycoproteins in Escherichia coli. Appl Environ Microbiol 77:871–881PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hug I, Feldman MF (2011) Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria. Glycobiology 21:138–151PubMedCrossRefGoogle Scholar
  28. 28.
    Nothaft H, Liu X, McNally DJ et al (2009) Study of free oligosaccharides derived from the bacterial N-glycosylation pathway. Proc Natl Acad Sci U S A 106:15019–15024PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86:2172–2175PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Feldman MF, Wacker M, Hernandez M et al (2005) Engineering N-linked protein glycosylation with diverse O-antigene lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci U S A 102:3016–3021PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anne A. Ollis
    • 1
  • Yi Chai
    • 1
  • Matthew P. DeLisa
    • 1
  1. 1.School of Chemical and Biomolecular EngineeringCornell UniversityIthacaUSA

Personalised recommendations