Advertisement

Mass Spectrometric Analysis of Oligo- and Polysialic Acids

  • Christina E. Galuska
  • Kai Maass
  • Sebastian P. GaluskaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1321)

Abstract

Oligo- and polysialic acids (oligo/polySia) are involved in numerous biological processes depending on the chain length, the comprised type of sialic acids, as well as the glycosidic linkages. Here, we describe the determination of the composition, the sequence, as well as the linkages between the sialic acid residues of lactonized oligo/polySia using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS)(/MS) and electrospray-ionization (ESI)-MS(n).

Key words

Polysialic acid DMB-derivatization Linkage analysis HPLC MALDI-TOF-mass spectrometry Electrospray-ion trap-mass spectrometry 

References

  1. 1.
    Schauer R (2009) Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 19:507–514PubMedCrossRefGoogle Scholar
  2. 2.
    Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102:439–469PubMedCrossRefGoogle Scholar
  3. 3.
    Sato C (2004) Chain length diversity of sialic acids and its biological significance. Trends Glycosci Glycotechnol 16:331–344CrossRefGoogle Scholar
  4. 4.
    Hildebrandt H, Mühlenhoff M, Weinhold B et al (2007) Dissecting polysialic acid and NCAM functions in brain development. J Neurochem 103(Suppl 1):56–64PubMedCrossRefGoogle Scholar
  5. 5.
    Kanato Y, Kitajima K, Sato C (2008) Direct binding of polysialic acid to a brain-derived neurotrophic factor depends on the degree of polymerization. Glycobiology 18:1044–1053PubMedCrossRefGoogle Scholar
  6. 6.
    Berois N, Osinaga E (2014) Glycobiology of neuroblastoma: impact on tumor behavior, prognosis, and therapeutic strategies. Front Oncol 4:114PubMedCentralPubMedGoogle Scholar
  7. 7.
    Stamatos NM, Zhang L, Jokilammi A et al (2014) Changes in polysialic acid expression on myeloid cells during differentiation and recruitment to sites of inflammation: role in phagocytosis. Glycobiology 24(9):864–879PubMedCrossRefGoogle Scholar
  8. 8.
    Simon P, Bäumner S, Busch O et al (2013) Polysialic acid is present in mammalian semen as a post-translational modification of the neural cell adhesion molecule NCAM and the polysialyltransferase ST8SiaII. J Biol Chem 288:18825–18833PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Ulm C, Saffarzadeh M, Mahavadi P et al (2013) Soluble polysialylated NCAM: a novel player of the innate immune system in the lung. Cell Mol Life Sci 70:3695–3708PubMedCrossRefGoogle Scholar
  10. 10.
    Hänsch M, Simon P, Schön J et al (2014) Polysialylation of NCAM correlates with onset and termination of seasonal spermatogenesis in roe deer. Glycobiology 24:488–493PubMedCrossRefGoogle Scholar
  11. 11.
    Miyata S, Sato C, Kitajima K (2007) Glycobiology of polysialic acid on sea urchin gametes. Trends Glycosci Glycotechnol 19:85–98CrossRefGoogle Scholar
  12. 12.
    Galuska SP (2013) Advances in sialic acid and polysialic acid detection methodologies. In: Tiralongo J, Martinez-Duncker I (Eds). Sialobiology: structure, biosynthesis and function. Betham e Books. pp 448–475Google Scholar
  13. 13.
    Michon F, Brisson JR, Jennings HJ (1987) Conformational differences between linear α2,8-linked homosialooligosaccharides and the epitope of the group B meningococcal polysaccharide. Biochemistry 26:8399–8405PubMedCrossRefGoogle Scholar
  14. 14.
    Galuska SP, Geyer H, Mink W et al (2012) Glycomic strategy for efficient linkage analysis of di-, oligo- and polysialic acids. J Proteomics 75:5266–5278PubMedCrossRefGoogle Scholar
  15. 15.
    Cheng MC, Lin SL, Wu SH et al (1998) High-performance capillary electrophoretic characterization of different types of oligo- and polysialic acid chains. Anal Biochem 260:154–159PubMedCrossRefGoogle Scholar
  16. 16.
    Kitazume S, Kitajima K, Inoue S et al (1992) Detection, isolation, and characterization of oligo/poly(sialic acid) and oligo/poly(deaminoneuraminic acid) units in glycoconjugates. Anal Biochem 202:25–34PubMedCrossRefGoogle Scholar
  17. 17.
    Sato C, Inoue S, Matsuda T et al (1998) Development of a highly sensitive chemical method for detecting alpha2,8-linked oligo/polysialic acid residues in glycoproteins blotted on the membrane. Anal Biochem 261:191–197PubMedCrossRefGoogle Scholar
  18. 18.
    Sato C, Inoue S, Matsuda T et al (1999) Fluorescent-assisted detection of oligosialyl units in glycoconjugates. Anal Biochem 266:102–109PubMedCrossRefGoogle Scholar
  19. 19.
    Galuska SP, Geyer R, Mühlenhoff M et al (2007) Characterization of oligo- and polysialic acids by MALDI-TOF-MS. Anal Chem 79:7161–7169PubMedCrossRefGoogle Scholar
  20. 20.
    Galuska SP, Geyer H, Bleckmann C et al (2010) Mass spectrometric fragmentation analysis of oligosialic and polysialic acids. Anal Chem 82:2059–2066PubMedCrossRefGoogle Scholar
  21. 21.
    Domon B, Costello CE (1988) Structure elucidation of glycosphingolipids and gangliosides using high-performance tandem mass spectrometry. Biochemistry 27:1534–1543PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christina E. Galuska
    • 1
  • Kai Maass
    • 2
  • Sebastian P. Galuska
    • 1
    Email author
  1. 1.Institute of Biochemistry, Faculty of MedicineUniversity of GiessenGiessenGermany
  2. 2.Institute for Organic Chemistry, Faculty of Biology and ChemistryUniversity of GiessenGiessenGermany

Personalised recommendations