Advertisement

Site-Specific Glycosylation Profiling Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS)

  • Clemens Gruber
  • Friedrich AltmannEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1321)

Abstract

A method for comprehensive glycoprotein characterization via glycopeptide generation and analysis is presented. Parallel analysis of a deglycosylated sample and the use of buffered solvent simplify the identification of peaks comprising the glycopattern of a given peptide.

Key words

Ammonium formate buffer Mass spectrometry Electrospray ionization (ESI) Revered-phase separation In-gel trypsin digestion 

References

  1. 1.
    Arnold JN, Wormald MR, Sim RB et al (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50PubMedCrossRefGoogle Scholar
  2. 2.
    Huhn C, Selman MH, Ruhaak LR et al (2009) IgG glycosylation analysis. Proteomics 9:882–913PubMedCrossRefGoogle Scholar
  3. 3.
    Zauner G, Selman MH, Bondt A et al (2013) Glycoproteomic analysis of antibodies. Mol Cell Proteomics 12:856–865PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Pabst M, Altmann F (2011) Glycan analysis by modern instrumental methods. Proteomics 11:631–643PubMedCrossRefGoogle Scholar
  5. 5.
    Reiding KR, Blank D, Kuijper DM et al (2014) High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Anal Chem 86:5784–5793PubMedCrossRefGoogle Scholar
  6. 6.
    Pabst M, Chang M, Stadlmann J et al (2012) Glycan profiles of the 27N-glycosylation sites of the HIV envelope protein CN54gp140. Biol Chem 393:719–730PubMedCrossRefGoogle Scholar
  7. 7.
    Scott NE, Parker BL, Connolly AM et al (2011) Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics 10:M000031–MCP000201PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Irungu J, Go EP, Zhang Y et al (2008) Comparison of HPLC/ESI-FTICR MS versus MALDI-TOF/TOF MS for glycopeptide analysis of a highly glycosylated HIV envelope glycoprotein. J Am Soc Mass Spectrom 19:1209–1220PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Jez J, Castilho A, Grass J et al (2013) Expression of functionally active sialylated human erythropoietin in plants. Biotechnol J 8:371–382PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Wu SW, Pu TH, Viner R et al (2014) Novel LC-MS(2) product dependent parallel data acquisition function and data analysis workflow for sequencing and identification of intact glycopeptides. Anal Chem 86:5478–5486PubMedCrossRefGoogle Scholar
  11. 11.
    Treuheit MJ, Costello CE, Halsall HB (1992) Analysis of the five glycosylation sites of human alpha 1-acid glycoprotein. Biochem J 283:105–112PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria

Personalised recommendations