Glycan Remodeling with Processing Inhibitors and Lectin-Resistant Eukaryotic Cells

  • Veronica T. Chang
  • Robert A. Spooner
  • Max Crispin
  • Simon J. Davis
Part of the Methods in Molecular Biology book series (MIMB, volume 1321)


Some of the most important and interesting molecules in metazoan biology are glycoproteins. The importance of the carbohydrate component of these structures is often revealed by the disease phenotypes that manifest when the biosynthesis of particular glycoforms is disrupted. On the other hand, the presence of large amounts of carbohydrate can often hinder the structural and functional analysis of glycoproteins. There are often good reasons, therefore, for wanting to engineer and predefine the N-glycans present on glycoproteins, e.g., in order to characterize the functions of the glycans or facilitate their subsequent removal. Here, we describe in detail two distinct ways in which to usefully interfere with oligosaccharide processing, one involving the use of specific processing inhibitors, and the other the selection of cell lines mutated at gene loci that control oligosaccharide processing, using cytotoxic lectins. Both approaches have the capacity for controlled, radical alteration of oligosaccharide processing in eukaryotic cells used for heterologous protein expression, and have great utility in the structural analysis of glycoproteins.

Key words

Mammalian expression N-glycan processing Kifunensine Lectin selection Protein crystallization 



This work was supported by the European Commission as SPINE (contract QLG2-CT-2002-00988) under the Integrated Programme “Quality of Life and Management of Living Resources,” the Wellcome Trust, Cancer Research UK, the Biotechnology and Biological Sciences Research Council, the Medical Research Council, and the Glycobiology Institute Endowment.


  1. 1.
    Gagneux P, Varki A (1999) Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9:747–755PubMedCrossRefGoogle Scholar
  2. 2.
    Julenius K, Molgaard A, Gupta R et al (2005) Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15:153–164PubMedCrossRefGoogle Scholar
  3. 3.
    Leahy DJ, Axel R, Hendrickson WA (1992) Crystal structure of a soluble form of the human T cell coreceptor CD8 at 2.6 Å resolution. Cell 68:1145–1162PubMedCrossRefGoogle Scholar
  4. 4.
    Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–644PubMedCrossRefGoogle Scholar
  5. 5.
    Parodi AJ (2000) Protein glucosylation and its role in protein folding. Annu Rev Biochem 69:69–93PubMedCrossRefGoogle Scholar
  6. 6.
    Schachter H (1991) The ‘yellow brick road’ to branched complex N-glycans. Glycobiology 1:453–461PubMedCrossRefGoogle Scholar
  7. 7.
    Davis SJ, Puklavec MJ, Ashford DA et al (1993) Expression of soluble recombinant glycoproteins with predefined glycosylation: application to the crystallization of the T-cell glycoprotein CD2. Protein Eng 6:229–232PubMedCrossRefGoogle Scholar
  8. 8.
    Davis SJ, Davies EA, Barclay AN et al (1995) Ligand binding by the immunoglobulin superfamily recognition molecule CD2 is glycosylation-independent. J Biol Chem 270:369–375PubMedCrossRefGoogle Scholar
  9. 9.
    Butters TD, Sparks LM, Harlos K et al (1999) Effects of N-butyldeoxynojirimycin and the Lec3.2.8.1 mutant phenotype on N-glycan processing in Chinese hamster ovary cells: application to glycoprotein crystallization. Protein Sci 8:1696–1701PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Chang VT, Crispin M, Aricescu AR et al (2007) Glycoprotein structural genomics: solving the glycosylation problem. Structure 15:267–273Google Scholar
  11. 11.
    Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30: E9PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Davie A, Greene A, Lullau E et al (2005) Optimisation and evaluation of a high-throughput mammalian protein expression system. Protein Expr Purif 42:111–21CrossRefGoogle Scholar
  13. 13.
    Geisse S, Henke M (2005) Large-scale transient transfection of mammalian cells: a newly emerging attractive option for recombinant protein production. J Struct Funct Genomics 6:165–70PubMedCrossRefGoogle Scholar
  14. 14.
    Aricescu AR, Assenberg R, Bill RM et al (2006) Eukaryotic expression: developments for structural proteomics. Acta Crystallogr D Biol Crystallogr 62:1114–1124PubMedCrossRefGoogle Scholar
  15. 15.
    Reeves PJ, Callewaert N, Contreras R et al (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK 293S stable mammalian cell line. Proc Natl Acad Sci U S A 99:13419–13424PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Aricescu AR, Siebold C, Choudhuri K et al (2007) Structure of a tyrosine phosphatase adhesive interaction reveals a spacer-clamp mechanism. Science 317:1217–1220PubMedCrossRefGoogle Scholar
  17. 17.
    Crispin M, Chang VT, Harvey DJ et al (2009) A human embryonic kidney 293T cell line mutated at the Golgi α-mannosidase II locus. J Biol Chem 284:21684–21695PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Jones EY, Davis SJ, Williams AF et al (1992) Crystal structure at 2.8 Å resolution of a soluble form of the cell adhesion molecule CD2. Nature 360:232–239PubMedCrossRefGoogle Scholar
  19. 19.
    Bodian DL, Jones EY, Harlos K et al (1994) Crystal structure of the extracellular region of the human adhesion molecule CD2 at 2.5 Å resolution. Structure 2:755–766PubMedCrossRefGoogle Scholar
  20. 20.
    Ikemizu S, Sparks LM, van der Merwe PA et al (1999) Crystal structure of the CD2-binding domain of CD58 (lymphocyte function-associated antigen 3) at 1.8 Å resolution. Proc Natl Acad Sci U S A 96:4289–4294PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Evans EJ, Castro MA, O’Brien R et al (2006) Crystal structure and binding properties of the CD2 and CD244 (2B4)-binding protein, CD48. J Biol Chem 281:29309–29320PubMedCrossRefGoogle Scholar
  22. 22.
    Ikemizu S, Glibert RJ, Fennelly JA et al (2000) Structure and dimerization of a soluble form of B7-1. Immunity 12:51–60PubMedCrossRefGoogle Scholar
  23. 23.
    Yu C, Sonnen AF, George R et al (2011) Rigid-body ligand recognition drives cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor triggering. J Biol Chem 286:6685–6696PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Bowden TA, Baruah K, Coles CH et al (2012) Chemical and structural analysis of an antibody folding intermediate trapped during glycan biosynthesis. J Am Chem Soc 134:17554–17563PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Crispin M, Bowden TA, Coles CH et al (2009) Carbohydrate and domain architecture of an immature antibody glycoform exhibiting enhanced effector functions. J Mol Biol 387:1061–1066PubMedCrossRefGoogle Scholar
  26. 26.
    Crispin M, Yu X, Bowden TA (2013) Crystal structure of sialylated IgG Fc: implications for the mechanism of intravenous immunoglobulin therapy. Proc Natl Acad Sci U S A 110:E3544–3546PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Bowden TA, Crispin M, Graham SC et al (2009) Unusual molecular architecture of the machupo virus attachment glycoprotein. J Virol 83:8259–8265PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Lyumkis D, Julien JP, de Val N et al (2013) Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 342:1484–1490PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Demaison C, Parsley K, Brouns G et al (2002) High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 13:803–813PubMedCrossRefGoogle Scholar
  30. 30.
    Aricescu AR, Lu W, Jones EY (2006) A time and cost efficient system for high level protein production in mammalian cells. Act Crystallogr D Biol Crystallogr 10:1243–1250CrossRefGoogle Scholar
  31. 31.
    Grueninger-Leitch F, D’Arcy A, D’Arcy B et al (1996) Deglycosylation of proteins for crystallization using recombinant fusion protein glycosidases. Protein Sci 5:2617–2622PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Olsnes S, Pihl A (1982) In: Cohen P, van Heyningen S (Eds). Molecular action of toxins and viruses. Elsevier, Amsterdam. pp. 51–105Google Scholar
  33. 33.
    Spooner RA, Lord JM (2012) How ricin and shiga toxin reach the cytosol of target cells: retrotranslocation from the endoplasmic reticulum. Curr Top Microbiol Immunol 357:19–40PubMedGoogle Scholar
  34. 34.
    Spooner RA, Watson PD, Marsden CJ et al (2004) Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 383:285–293PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Li S, Spooner RA, Allen SC et al (2010) Folding-competent and folding-defective forms of Ricin A chain have different fates following retrotranslocation from the endoplasmic reticulum. Mol Biol Cell 21:2543–2554PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Spooner RA, Hart PJ, Cook JP et al (2008) Cytosolic chaperones influence the fate of a toxin dislocated from the endoplasmic reticulum. Proc Natl Acad Sci U S A 105:17408–17413PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Pietroni P, Vasisht N, Cook JP et al (2013) The proteasome cap RPT5/Rpt5p subunit prevents aggregation of unfolded ricin A chain. Biochem J 453:435–445PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Veronica T. Chang
    • 1
  • Robert A. Spooner
    • 2
  • Max Crispin
    • 3
  • Simon J. Davis
    • 1
  1. 1.Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
  2. 2.Life SciencesUniversity of WarwickCoventryUK
  3. 3.Department of Biochemistry, Oxford Glycobiology InstituteUniversity of OxfordOxfordUK

Personalised recommendations