Advertisement

Subcellular Targeting of Proteins Involved in Modification of Plant N- and O-Glycosylation

  • Martina Dicker
  • Jennifer Schoberer
  • Ulrike Vavra
  • Richard Strasser
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1321)

Abstract

Plants are attractive expression hosts for the production of recombinant glycoprotein therapeutics. The quality and efficiency of these biopharmaceuticals are very often influenced by the glycosylation profile. Consequently, approaches are needed that enable the production of recombinant glycoproteins with customized and homogenous N- and O-glycan structures. Here, we describe convenient tools that allow targeting and retention of glycan-modifying enzymes in the early secretory pathway of plants. These protocols can be used to fine-tune the subcellular localization of glycosyltransferases and glycosidases in plants and consequently to increase the homogeneity of glycosylation on recombinant glycoproteins.

Key words

Glycosylation Complex N-glycans Mucin-type O-glycans Glycoprotein Glycosyltransferase Glycosidases Endoplasmic reticulum Golgi apparatus Protein targeting Protein retention 

Notes

Acknowledgements

We would like to thank Christiane Veit (Department of Applied Genetics and Cell Biology) for assistance in cloning and Friedrich Altmann and Daniel Maresch (both Department of Chemistry) for LC-ESI-MS-analysis. This work was supported by a grant from the Federal Ministry of Transport, Innovation and Technology (bmvit) and Austrian Science Fund (FWF): TRP 242-B20.

References

  1. 1.
    Liebminger E, Hüttner S, Vavra U et al (2009) Class I alpha-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana. Plant Cell 21:3850–3867PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Altmann F (2007) The role of protein glycosylation in allergy. Int Arch Allergy Immunol 142:99–115PubMedCrossRefGoogle Scholar
  3. 3.
    Jin C, Altmann F, Strasser R et al (2008) A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits. Glycobiology 18:235–241PubMedCrossRefGoogle Scholar
  4. 4.
    Bardor M, Faveeuw C, Fitchette A et al (2003) Immunoreactivity in mammals of two typical plant glyco-epitopes, core alpha(1,3)-fucose and core xylose. Glycobiology 13:427–434PubMedCrossRefGoogle Scholar
  5. 5.
    Lerouge P, Cabanes-Macheteau M, Rayon C et al (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48PubMedCrossRefGoogle Scholar
  6. 6.
    Fitchette A, Cabanes-Macheteau M et al (1999) Biosynthesis and immunolocalization of Lewis a-containing N-glycans in the plant cell. Plant Physiol 121:333–344PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Strasser R, Bondili J, Vavra U et al (2007) A unique beta1,3-galactosyltransferase is indispensable for the biosynthesis of N-glycans containing Lewis a structures in Arabidopsis thaliana. Plant Cell 19:2278–2292PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Schoberer J, Runions J, Steinkellner H et al (2010) Sequential depletion and acquisition of proteins during Golgi stack disassembly and reformation. Traffic 11:1429–1444PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Essl D, Dirnberger D, Gomord V et al (1999) The N-terminal 77 amino acids from tobacco N-acetylglucosaminyltransferase I are sufficient to retain a reporter protein in the Golgi apparatus of Nicotiana benthamiana cells. FEBS Lett 453:169–173PubMedCrossRefGoogle Scholar
  10. 10.
    Dirnberger D, Bencúr P, Mach L et al (2002) The Golgi localization of Arabidopsis thaliana beta1,2-xylosyltransferase in plant cells is dependent on its cytoplasmic and transmembrane sequences. Plant Mol Biol 50:273–281PubMedCrossRefGoogle Scholar
  11. 11.
    Saint-Jore-Dupas C, Nebenführ A, Boulaflous A et al (2006) Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. Plant Cell 18:3182–3200PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Strasser R, Schoberer J, Jin C et al (2006) Molecular cloning and characterization of Arabidopsis thaliana Golgi alpha-mannosidase II, a key enzyme in the formation of complex N-glycans in plants. Plant J 45:789–803PubMedCrossRefGoogle Scholar
  13. 13.
    Bretscher M, Munro S (1993) Cholesterol and the Golgi apparatus. Science 261:1280–1281PubMedCrossRefGoogle Scholar
  14. 14.
    Nilsson T, Slusarewicz P, Hoe M et al (1993) Kin recognition. A model for the retention of Golgi enzymes. FEBS Lett 330:1–4PubMedCrossRefGoogle Scholar
  15. 15.
    Nilsson T, Rabouille C, Hui N et al (1996) The role of the membrane-spanning domain and stalk region of N-acetylglucosaminyltransferase I in retention, kin recognition and structural maintenance of the Golgi apparatus in HeLa cells. J Cell Sci 109:1975–1989PubMedGoogle Scholar
  16. 16.
    Fenteany F, Colley K (2005) Multiple signals are required for alpha2,6-sialyltransferase (ST6Gal I) oligomerization and Golgi localization. J Biol Chem 280:5423–5429PubMedCrossRefGoogle Scholar
  17. 17.
    Tu L, Banfield D (2010) Localization of Golgi-resident glycosyltransferases. Cell Mol Life Sci 67:29–41PubMedCrossRefGoogle Scholar
  18. 18.
    Ali MF, Chachadi VB, Petrosyan A et al (2012) Golgi phosphoprotein 3 determines cell binding properties under dynamic flow by controlling Golgi localization of core 2 N-acetylglucosaminyltransferase 1. J Biol Chem 287:39564–39577PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Boevink P, Oparka K, Santa Cruz S et al (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447PubMedCrossRefGoogle Scholar
  20. 20.
    Wee E, Sherrier D, Prime T et al (1998) Targeting of active sialyltransferase to the plant Golgi apparatus. Plant Cell 10:1759–1768PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Palacpac N, Yoshida S, Sakai H et al (1999) Stable expression of human beta1,4-galactosyltransferase in plant cells modifies N-linked glycosylation patterns. Proc Natl Acad Sci U S A 96:4692–4697PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Bakker H, Bardor M, Molthoff J et al (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci U S A 98:2899–2904PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Strasser R, Castilho A, Stadlmann J et al (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous beta1,4-galactosylated N-glycan profile. J Biol Chem 284:20479–20485PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Bakker H, Rouwendal G, Karnoup A et al (2006) An antibody produced in tobacco expressing a hybrid beta-1,4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes. Proc Natl Acad Sci U S A 103:7577–7582PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Vézina LP, Faye L, Lerouge P et al (2009) Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol J 7:442–455PubMedCrossRefGoogle Scholar
  26. 26.
    Castilho A, Gattinger P, Grass J et al (2011) N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology 21:813–823PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Nagels B, Van Damme EJ, Pabst M et al (2011) Production of complex multiantennary N-glycans in Nicotiana benthamiana plants. Plant Physiol 155:1103–1112PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Bennett EP, Mandel U, Clausen H et al (2012) Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22:736–756PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Yang Z, Drew DP, Jørgensen B et al (2012) Engineering mammalian mucin-type O-glycosylation in plants. J Biol Chem 287:11911–11923PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Castilho A, Neumann L, Daskalova S et al (2012) Engineering of sialylated mucin-type O-glycosylation in plants. J Biol Chem 287:36518–36526PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Strasser R, Mucha J, Schwihla H et al (1999) Molecular cloning and characterization of cDNA coding for beta1,2 N-acetylglucosaminyltransferase I (GlcNAc-TI) from Nicotiana tabacum. Glycobiology 9:779–785PubMedCrossRefGoogle Scholar
  32. 32.
    Schoberer J, Vavra U, Stadlmann J et al (2009) Arginine/lysine residues in the cytoplasmic tail promote ER export of plant glycosylation enzymes. Traffic 10:101–115PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Strasser R, Stadlmann J, Schähs M et al (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6:392–402PubMedCrossRefGoogle Scholar
  34. 34.
    Hamilton CM (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200:107–116PubMedCrossRefGoogle Scholar
  35. 35.
    Strasser R, Stadlmann J, Svoboda B et al (2005) Molecular basis of N-acetylglucosaminyltransferase I deficiency in Arabidopsis thaliana plants lacking complex N-glycans. Biochem J 387:385–391PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Schoberer J, Liebminger E, Botchway SW et al (2013) Time-resolved fluorescence imaging reveals differential interactions of N-glycan processing enzymes across the Golgi stack in planta. Plant Physiol 161:1737–1754PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Strasser R, Altmann F, Mach L et al (2004) Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose. FEBS Lett 561:132–136PubMedCrossRefGoogle Scholar
  38. 38.
    Castilho A, Strasser R, Stadlmann J et al (2010) In planta protein sialylation through overexpression of the respective mammalian pathway. J Biol Chem 285:15923–15930PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Sparkes I, Runions J, Kearns A et al (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025PubMedCrossRefGoogle Scholar
  40. 40.
    Schähs M, Strasser R, Stadlmann J et al (2007) Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol J 5:657–663PubMedCrossRefGoogle Scholar
  41. 41.
    Stadlmann J, Pabst M, Kolarich D et al (2008) Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8:2858–2871PubMedCrossRefGoogle Scholar
  42. 42.
    Henquet M, Heinhuis B, Borst JW et al (2010) Differential effects of human and plant N-acetylglucosaminyltransferase I (GnTI) in plants. Transgenic Res 19:535–547PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Grefen C, Donald N, Hashimoto K et al (2010) A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J 64:355–365PubMedCrossRefGoogle Scholar
  44. 44.
    Boulaflous A, Saint-Jore-Dupas C, Herranz-Gordo MC et al (2009) Cytosolic N-terminal arginine-based signals together with a luminal signal target a type II membrane protein to the plant ER. BMC Plant Biol 9:144PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Pelham HR (1990) The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci 15:483–486PubMedCrossRefGoogle Scholar
  46. 46.
    De Muynck B, Navarre C, Boutry M (2010) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8:529–563PubMedCrossRefGoogle Scholar
  47. 47.
    Ko K, Tekoah Y, Rudd P et al (2003) Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci U S A 100:8013–8018PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Triguero A, Cabrera G, Cremata JA et al (2005) Plant-derived mouse IgG monoclonal antibody fused to KDEL endoplasmic reticulum-retention signal is N-glycosylated homogeneously throughout the plant with mostly high-mannose-type N-glycans. Plant Biotechnol J 3:449–457PubMedCrossRefGoogle Scholar
  49. 49.
    Petruccelli S, Otegui MS, Lareu F et al (2006) A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds. Plant Biotechnol J 4:511–527PubMedGoogle Scholar
  50. 50.
    Fujiyama K, Misaki R, Sakai Y et al (2009) Change in glycosylation pattern with extension of endoplasmic reticulum retention signal sequence of mouse antibody produced by suspension-cultured tobacco BY2 cells. J Biosci Bioeng 107:165–172PubMedCrossRefGoogle Scholar
  51. 51.
    Niemer M, Mehofer U, Torres Acosta JA et al (2014) The human anti-HIV antibodies 2F5, 2G12, and PG9 differ in their susceptibility to proteolytic degradation: down-regulation of endogenous serine and cysteine proteinase activities could improve antibody production in plant-based expression platforms. Biotechnol J 9:493–500PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    von Heijne G (1989) Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341:456–458CrossRefGoogle Scholar
  53. 53.
    Nebenführ A, Gallagher L, Dunahay T et al (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121:1127–1142PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Saint-Jore C, Evins J, Batoko H et al (2002) Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J 29:661–678PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Martina Dicker
    • 1
  • Jennifer Schoberer
    • 1
  • Ulrike Vavra
    • 1
  • Richard Strasser
    • 1
  1. 1.Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria

Personalised recommendations